Exercise 3.5

(a) We have

$$
\begin{aligned}
{ }_{7} p_{[70]}= & p_{[70]} \cdot p_{[70]+1} \cdot p_{[70]+2} \cdot p_{[70]+3} \cdot p_{[70]+4} \cdot p_{75} \cdot p_{76} \\
= & \left.\left(1-q_{[70]}\right)\left(1-q_{[70]+1}\right)\left(1-q_{[70]+2}\right)\left(1-q_{[70]+3}\right)\left(1-q_{[70]+4}\right)\left(1-q_{75}\right)\left(1-q_{76}\right)\right) \\
= & (1-0.010373)(1-0.014330)(1-0.019192)(1-0.025023)(1-0.031859) \\
& \quad \times(1-0.043686)(1-0.048270) \\
= & 0.821929 .
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
{ }_{1 \mid 2} q_{[70]+2} & =p_{[70]+2} \cdot{ }_{2} q_{[70]+3}=p_{[70]+2} \cdot\left(1-{ }_{2} p_{[70]+3}\right) \\
& =p_{[70]+2} \cdot\left(1-p_{[70]+3} \cdot p_{[70]+4}\right) \\
& =p_{[70]+2} \cdot\left[1-\left(1-q_{[70]+3}\right)\left(1-q_{[70]+4}\right)\right] \\
& =(1-0.019192)[1-(1-0.025023)(1-0.031859)] \\
& =0.05500841 .
\end{aligned}
$$

(c) First note that we have

$$
{ }_{3.8} q_{[70]+0.2}={ }_{0.8} q_{[70]+0.2}+{ }_{0.8} p_{[70]+0.2} \cdot{ }_{3} q_{[70]+1},
$$

where ${ }_{0.8} q_{[70]+0.2}$ can de derived from the equation

$$
q_{[70]}={ }_{0.2} q_{[70]}+{ }_{0.2} p_{[70]} \cdot{ }_{0.8} q_{[70]+0.2} .
$$

Assuming UDD within integral ages, we have

$$
{ }_{0.8} q_{[70]+0.2}=\frac{q_{[70]}-{ }_{0.2} q_{[70]}}{{ }_{0.2} p_{[70]}}=\frac{0.8 q_{[70]}}{1-0.2 q_{[70]}}=\frac{0.8(0.010373)}{1-0.2(0.010373)}=0.008315652
$$

Subsequently, we have

$$
\begin{aligned}
{ }_{3.8} q_{[70]+0.2}= & { }_{0.8} q_{[70]+0.2}+\left(1-{ }_{0.8} q_{[70]+0.2}\right)\left(1-{ }_{3} p_{[70]+1}\right) \\
= & 0.008315652+(1-0.008315652) \\
& \times[1-(1-(1-0.014330)(1-0.019192)(1-0.025023))] \\
= & 0.06527606
\end{aligned}
$$

