## Exercise 3.10

For $0 \leq t \leq 2$, we have

$$
\begin{aligned}
{ }_{t} p_{[x]} & =\exp \left\{-\int_{0}^{t} \mu_{[x]+s} d s\right\} \\
& =\exp \left\{-\int_{0}^{t} 0.9^{2-s} \mu_{x+s} d s\right\} \\
& =\exp \left\{-\int_{0}^{t} 0.9^{2-s}\left(A+B c^{x+s}\right) d s\right\} \\
& =\exp \left\{-0.9^{2} \int_{0}^{t}\left(0.9^{-s} A+B 0.9^{-s} c^{x+s}\right) d s\right\} \\
& =\exp \left\{-0.9^{2}\left(A \int_{0}^{t} 0.9^{-s} d s+B c^{x} \int_{0}^{t}(0.9 / c)^{-s} d s\right)\right\}
\end{aligned}
$$

We can easily verify that for any positive constant $a>0$, we have

$$
\int_{0}^{t} a^{-s} d s=\frac{1-a^{-t}}{\log (a)}
$$

Applying this, we then have

$$
{ }_{t} p_{[x]}=\exp \left\{-0.9^{2}\left(A \frac{1-0.9^{-t}}{\log (0.9)}+B c^{x} \frac{1-(0.9 / c)^{-t}}{\log (0.9 / c)}\right)\right\}
$$

The result immediately follows by factoring out the term $-0.9^{-t}$ from inside the parenthesis.

