Exercise 2.2

(a) The implied limiting age ω is the solution to $G(\omega)=0$ which leads us to

$$
18000-110 \omega-\omega^{2}=-(\omega-90)(\omega+200)=0
$$

Thus, $\omega=90$ since the limiting age cannot be negative.
(b) For G to be a legitimate survival function, it must satisfy 3 conditions:
(i) $G(0)=1$: trivial
(ii) $G(\omega)=0$: verified in (a) above.
(iii) G must be non-increasing. We check whether $d G(x) / d x \leq 0$.

$$
\frac{d G(x)}{d x}=\frac{-2(55+x)}{18000}
$$

which clearly is non-positive for all $0 \leq x \leq 90$.
(c) Now that we have verified $G(x)$ is a legitimate survival function, we can write it as $S_{0}(x)$ so that

$$
{ }_{20} p_{0}=\operatorname{Pr}\left[T_{0}>20\right]=S_{0}(20)=\frac{18000-110(20)-20^{2}}{18000}=\frac{15400}{18000}=\frac{77}{90}=0.85555556 .
$$

This gives the probability that a newborn will survive to age 20 .
(d) The survival function for a life age 20 can be expressed as

$$
\begin{aligned}
S_{20}(t) & =\operatorname{Pr}\left[T_{20}>t\right]=\frac{\operatorname{Pr}\left[T_{0}>20+t\right]}{\operatorname{Pr}\left[T_{0}>t\right]}=\frac{S_{0}(20+t)}{S_{0}(20)} \\
& =\frac{\left[18000-110(20+t)-(20+t)^{2}\right] / 18000}{\left[18000-110(20)-20^{2}\right] / 18000} \\
& =\frac{\left[18000-110(20)-110 t-20^{2}-40 t-t^{2}\right] / 18000}{\left[18000-110(20)-20^{2}\right] / 18000}=1-\frac{150 t+t^{2}}{15400} .
\end{aligned}
$$

(e) The probability that (20) will die between the ages of 30 and 40 is

$$
\begin{aligned}
\operatorname{Pr}\left[10<T_{20}<20\right] & =S_{20}(10)-S_{20}(20)=\frac{150(20)+20^{2}}{15400}-\frac{150(10)+10^{2}}{15400} \\
& =\frac{1800}{15400}=\frac{9}{77}=0.1168831 .
\end{aligned}
$$

(f) The force of mortality at age x is given by

$$
\mu_{x}=\frac{-d S_{0}(x) / d x}{S_{0}(x)}=\frac{[110+2 x] / 18000}{\left[18000-110 x-x^{2}\right] / 18000}=\frac{110+2 x}{18000-110 x-x^{2}},
$$

so that $\mu_{50}=\frac{110+2(50)}{18000-110(50)-50^{2}}=\frac{21}{1000}=0.021$.

