Exercise 2.15

(a) We know that

$$
\stackrel{\circ}{e}_{x}=\int_{0}^{\infty}{ }_{s} p_{x} d s=\int_{0}^{\infty} \frac{S_{0}(x+s)}{S_{0}(x)} d s=\frac{1}{S_{0}(x)} \int_{0}^{\infty} S_{0}(x+s) d s
$$

Using a change of variable of integration $t=x+s$, we find that

$$
\dot{e}_{x}=\frac{1}{S_{0}(x)} \int_{0}^{\infty} S_{0}(x+t) d t=\frac{1}{S_{0}(x)} \int_{x}^{\infty} S_{0}(t) d t
$$

and the result follows. Now taking the derivative of both sides with respect to x, we find

$$
\frac{d}{d x} \stackrel{\circ}{e}_{x}=\frac{-S_{0}(x) S_{0}(x)+f_{0}(x) \int_{x}^{\infty} S_{0}(t) d t}{S_{0}(x)^{2}}=-1+\frac{f_{0}(x)}{S_{0}(x)} \cdot \frac{\int_{x}^{\infty} S_{0}(t) d t}{S_{0}(x)} .
$$

The result follows because we know that

$$
\mu_{x}=\frac{f_{0}(x)}{S_{0}(x)}
$$

and

$$
\stackrel{\circ}{e}_{x}=\frac{1}{S_{0}(x)} \int_{x}^{\infty} S_{0}(t) d t
$$

Another approach to prove this is to use the result of Exercise 2.9:

$$
\frac{d}{d x} \stackrel{\circ}{e}_{x}=\int_{0}^{\infty}{ }_{t} p_{x}\left(\mu_{x}-\mu_{x+t} d t=\mu_{x} \int_{0}^{\infty}{ }_{t} p_{x} d t-\int_{0}^{\infty}{ }_{t} p_{x} \mu_{x+t} d t=\mu_{x} \stackrel{\AA}{e}_{x}-1 .\right.
$$

(b) If we let $g(x)=x+\dot{e}_{x}$, then

$$
\frac{d}{d x} g(x)=1+\frac{d}{d x} \stackrel{\circ}{e}_{x}=1+\mu_{x} \stackrel{\circ}{e}_{x}-1=\mu_{x} \dot{e}_{x}>0
$$

Thus, g is an increasing function of age x. This means that as you age, the higher your average age at death. Each year you survive is an addition to your average age at death for certain.

