Exercise 2.14

(a) Starting with

$$
\begin{aligned}
\stackrel{\circ}{e}_{x} & =\int_{0}^{\infty}{ }_{t} p_{x} d t=\int_{0}^{1}{ }_{t} p_{x} d t+\int_{1}^{\infty}{ }_{t} p_{x} d t \\
& \leq 1+\int_{1}^{\infty}{ }_{t} p_{x} d t=1+\int_{1}^{\infty} p_{x} \cdot{ }_{t-1} p_{x+1} d t \\
& \leq 1+\int_{1}^{\infty}{ }_{t-1} p_{x+1} d t=1+\int_{0}^{\infty}{ }_{s} p_{x+1} d s \\
& =1+\stackrel{\star}{e}_{x+1}
\end{aligned}
$$

The inequalities hold because we know that ${ }_{t} p_{x} \leq 1$ for all x and t.
A heuristic approach is to use the inequality $T_{x} \leq T_{x+1}+1$ and by taking the expectation of both sides, you get the desired result. Here, intuitively, a person age x who reaches to live another year will live a longer life.
(b) Because we know that $T_{x} \geq\left\lfloor T_{x}\right\rfloor=K_{x}$, taking the expectation of both sides gives us $\mathrm{E}\left[T_{x}\right] \geq \mathrm{E}\left[K_{x}\right]$ and the result immediately follows.
(c) The difference between \dot{e}_{x} and e_{x} is the additional average lifetime a person has in the year of death. If we assume deaths uniformly occur between integral ages, an extra half-year would be expected to be lived.
(d) From Exercise 2.9, we found that if the force of mortality μ_{x} is non-increasing with age x, then $\frac{d}{d x} t_{x} \leq 0$. This leads us to

$$
\frac{d}{d x} \stackrel{e}{e}_{x}=\frac{d}{d x} \int_{0}^{\infty}{ }_{t} p_{x} d t=\int_{0}^{\infty} \frac{d}{d x} t_{x} d t \leq 0
$$

Thus for forces of mortality that are non-increasing, then the average future lifetime will also be non-increasing. However, we know that for human mortality pattern, the force of mortality generally decreases at infancy so that this does not generally hold for all ages x.

