Exercise 2.11

(a) It is not difficult to show that under Makeham's law, we have

$$
S_{0}(x)=\exp \left\{\int_{0}^{x}\left(A+B c^{z}\right) d z\right\}=\exp \left\{-\left[A x+\frac{B}{\log (c)}\left(c^{x}-1\right)\right]\right\}
$$

It follows therefore that

$$
\begin{aligned}
{ }_{t} p_{x} & =S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)} \\
& =\frac{\exp \left\{-\left[A(x+t)+\frac{B}{\log (c)}\left(c^{x+t}-1\right)\right]\right\}}{\exp \left\{-\left[A x+\frac{B}{\log (c)}\left(c^{x}-1\right)\right]\right\}} \\
& =e^{-A t-\frac{B}{\log (c)} c^{x}\left(c^{t}-1\right)}=s^{t} g^{c^{x}\left(c^{t}-1\right)}
\end{aligned}
$$

where clearly $s=e^{-A}$ and $g=e^{-B / \log (c)}$.
(b) We use result of part (a) by noting that

$$
\log _{t} p_{x}=t \log (s)+c^{x}\left(c^{t}-1\right) \log (g)
$$

It therefore follows that

$$
\begin{aligned}
\frac{\log _{10} p_{70}-\log _{{ }_{10}} p_{60}}{\log _{{ }_{10}} p_{60}-\log _{10} p_{50}} & =\frac{10 \log (s)+c^{70}\left(c^{10}-1\right) \log (g)-10 \log (s)-c^{60}\left(c^{10}-1\right) \log (g)}{10 \log (s)+c^{60}\left(c^{10}-1\right) \log (g)-10 \log (s)-c^{50}\left(c^{10}-1\right) \log (g)} \\
& =\frac{c^{60}\left(c^{10}-1\right)}{c^{50}\left(c^{10}-1\right)}=c^{10}
\end{aligned}
$$

The result follows immediately by raising both sides to the power of 0.10 . Such property can indeed be generalized as follows: fix x and t, the following can be similarly verified:

$$
c=\left[\frac{\log _{t} p_{x+2 t}-\log _{t} p_{x+t}}{\log _{t} p_{x+t}-\log _{t} p_{x}}\right]^{1 / t}
$$

