Exercise 2.10

For Gompertz law, we have $\mu_{x}=B c^{x}$ so that

$$
\frac{\mu_{50}}{\mu_{30}}=\frac{0.000344}{0.000130}=\frac{172}{65}=c^{20} .
$$

This gives us $c=(172 / 65)^{1 / 20}$ and thus, we have

$$
\begin{aligned}
{ }_{10} p_{40} & =\exp \left\{-\int_{0}^{10} \mu_{40+s} d s\right\} \\
& =\exp \left\{-B c^{40} \int_{0}^{10} c^{s} d s\right\} \\
& =\exp \left\{-\frac{B}{\log (c)} c^{40}\left(c^{10}-1\right)\right\} \\
& =\exp \left\{-\frac{0.000130(172 / 65)^{-3 / 2}}{\log (172 / 65)^{1 / 20}}(172 / 65)^{2}\left[(172 / 65)^{1 / 2}-1\right]\right\} \\
& =0.9972799
\end{aligned}
$$

This value gives the probability that a life (40) will survive to reach age 50 .

