Exercise 2.1

(a) The probability that a newborn life dies before age 60 is given by

$$
\operatorname{Pr}\left[T_{0} \leq 60\right]=F_{0}(60)=1-(1-60 / 105)^{1 / 5}=1-(45 / 105)^{1 / 5}=1-(3 / 7)^{1 / 5}=0.1558791 .
$$

(b) The probability that (30) survives to at least age 70 is

$$
\operatorname{Pr}\left[T_{30}>40\right]=\frac{\operatorname{Pr}\left[T_{0}>70\right]}{\operatorname{Pr}\left[T_{0}>30\right]}=\frac{1-F_{0}(70)}{1-F_{0}(30)}=\frac{35^{1 / 5}}{75^{1 / 5}}=\left(\frac{7}{15}\right)^{1 / 5}=0.8586207 .
$$

(c) The probability that (20) dies between 90 and 100 is

$$
\operatorname{Pr}\left[70<T_{20} \leq 80\right]=\frac{\operatorname{Pr}\left[90<T_{0} \leq 100\right]}{\operatorname{Pr}\left[T_{0}>20\right]}=\frac{F_{0}(100)-F_{0}(90)}{1-F_{0}(20)}=\frac{15^{1 / 5}-5^{1 / 5}}{85^{1 / 5}}=0.1394344 .
$$

(d) First, derive the form of the force of mortality:

$$
\mu_{x}=\frac{f_{0}(x)}{1-F_{0}(x)}=\frac{d F_{0}(x) / d x}{1-F_{0}(x)}=\frac{\frac{1}{5}\left(1-\frac{x}{105}\right)^{-4 / 5}\left(\frac{1}{105}\right)}{\left(1-\frac{x}{105}\right)^{1 / 5}}=\frac{1}{5(105-x)}
$$

Thus, $\mu_{50}=\frac{1}{5(55)}=0.003636364$.
(e) The median future lifetime of (50) is the solution m to

$$
\operatorname{Pr}\left[T_{50}>m\right]=\frac{1}{2}=\left(1-\frac{m}{55}\right)^{1 / 5} .
$$

This leads us to $m=55\left[1-(1 / 2)^{5}\right]=53.28125$.
(f) For a person currently age 50, his survival function is

$$
{ }_{t} p_{50}=\operatorname{Pr}\left[T_{50}>t\right]=\frac{\operatorname{Pr}\left[T_{0}>50+t\right]}{\operatorname{Pr}\left[T_{0}>50\right]}=\left(\frac{55-t}{55}\right)^{1 / 5}=\left(1-\frac{t}{55}\right)^{1 / 5}
$$

for $0 \leq t \leq 55$. His complete expectation of life is therefore

$$
\grave{e}_{50}=\int_{0}^{55}{ }_{t} p_{50} d t=\int_{0}^{55}\left(1-\frac{t}{55}\right)^{1 / 5} d t=55 \int_{0}^{1} u^{1 / 5} d u=55(5 / 6)=45.83333 .
$$

(g) The curtate expectation of life at age 50 is

$$
e_{50}=\sum_{k=1}^{55}{ }_{k} p_{50}=\sum_{k=1}^{55}\left(1-\frac{k}{55}\right)^{1 / 5}=\left(\frac{54}{55}\right)^{1 / 5}+\left(\frac{53}{55}\right)^{1 / 5}+\cdots+\left(\frac{1}{55}\right)^{1 / 5}=45.17675 .
$$

The sum above can be done in an R program as follows:

```
> k <- 1:54
> e <- (k/55)^(1/5)
> sum(e)
```

[1] 45.17675

