MATH 3630
Actuarial Mathematics I
Final Examination
Tuesday, 11 December 2018
Time Allowed: 2 hours (1:00-3:00 pm)
Room: OAK 117
Total Marks: 120 points
Please write your name and student number at the spaces provided:
\qquad Student ID:

- There are twelve (12) written-answer questions here and you are to answer all twelve. Each question is worth 10 points. Your final mark will be divided by 120 to convert to a unit of 100%.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught cheating will be subject to university's disciplinary action.
- Good luck.
- Have a Happy and Healthy Christmas and New Year!

Question	Worth	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
Total	120	
$\%$	$\div 120$	

Question No. 1:
The mortality pattern for a cohort of newborn can be described by

$$
\mu_{x}= \begin{cases}0.01, & \text { for } 0<x \leq 40 \\ 0.04, & \text { for } x>40\end{cases}
$$

A medical breakthrough reduces the force of mortality for age beyond 40 by 25%, but will not affect mortality prior to, and including, age 40.
Calculate the percentage improvement in the probability of a 25 -year-old reaching to age 65 as a result of this medical breakthrough.

Question No. 2:

For a life (65), you are given the following extract from a life table:

k	ℓ_{65+k}
0	5,000
1	4,900
2	4,700
3	4,400
4	4,000
5	3,500

Mortality between integer ages is assumed to follow Uniform Distribution of Death (UDD).
Calculate the probability that (66) will die between ages 68.25 and 69.40.

Question No. 3:

You are given:

- For age prior to 45 , mortality follows a constant force with $\mu=0.02$.
- For ages 45 and later, mortality follows the Survival Ultimate Life Table.
- $i=0.05$
- Z is the present value random variable for a whole life insurance of 1 payable at the end of the year of death issued to (40).

Calculate the probability that Z will be greater than 0.6.

Question No. 4:
You are given:

- The following extract from a mortality table:

x	95	96	97	98	99	100
ℓ_{x}	1000	750	-	200	50	0

- $v=0.90$
- $\ddot{a}_{95}=2.2$
- $\ddot{a}_{97}=1.3$

Calculate ℓ_{97}.

Question No. 5:

A fully discrete whole life insurance of 1000 is issued to (46). You are given:

- Expenses consist of 10% of annual gross premium in the first year and 5% in subsequent years.
- $A_{45}=0.15$
- $p_{45}=0.99$
- $i=0.04$

Calculate the gross annual premium for this policy.

Question No. 6:

For a special whole life insurance on (50), you are given:

- Death benefit, payable at the end of the year of death, consists of 1000 plus the return of all premiums without interest.
- Annual net premium of 16.95 is payable at the beginning of each year.
- $i=0.05$
- $(I A)_{50}=16.97$

Calculate A_{50}.

Question No. 7:

ABC Insurance Company sells 500 fully discrete whole life insurance policies of 1 , each with the same age x. You are given:

- All policies have independent future lifetimes.
- $i=0.05$
- $A_{x}=0.270$
- ${ }^{2} A_{x}=0.093$
- Premium is determined according to the portfolio percentile principle, with the probability that the present value of the total future loss on the portfolio is negative is at least 95%.
- The 95th percentile of a standard normal distribution is 1.645 .

Calculate the annual premium for each policy.

Question No. 8:

For a 20 -year endowment life insurance policy issued to (45), you are given:

- The death benefit of 1000 is payable at the end of the year of death.
- A level premium is paid at the beginning of each year during the term of the policy.
- Mortality follows the Survival Ultimate Life Table.
- $i=0.05$
- Net premium is calculated according to the actuarial equivalence principle.

Calculate the net premium reserve at the end of year 10.

Question No. 9:

For a fully discrete whole life insurance policy of 10,000 issued to (45), you are given:

- The only expense, incurred at policy issue, is 100 .
- Mortality follows the Survival Ultimate Life Table.
- $i=0.05$
- Gross premium is determined according to the actuarial equivalence principle.

Calculate the gross premium reserve at the end of year 10 .

Question No. 10:

For a special single premium 20-year term insurance on (65):

- The death benefit, payable at the end of the year of death, is equal to 2500 plus the net premium reserve.
- $q_{65+k}=0.02$, for $k=0,1,2, \ldots$
- $i=0.02$

Calculate the single net premium for this insurance.

Question No. 11:

For a fully discrete whole life insurance of 1000 to (50), you are given:

- Expenses consist of 10% of the annual gross premium in the first year and 5% of the annual gross premium in subsequent years.
- Mortality follows the Survival Ultimate Life Table.
- $i=0.05$
- The annual gross premium is 17.50 .

Calculate the probability of a positive loss at issue.

Question No. 12:

For a fully discrete whole life insurance of 10,000 on (45), you are given:

- The annual benefit premium is 161.45 .
- The net premium reserve at the end of 15 years is ${ }_{15} V=607.55$.
- $q_{59}=0.016$ and $q_{60}=0.018$
- $i=0.065$
- Deaths are uniformly distributed over integer ages.

Calculate ${ }_{15.6} V$, the net premium reserve at the end of 15.6 years.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

