MATH 3630 Actuarial Mathematics I Final Examination Tuesday, 11 December 2018 Time Allowed: 2 hours (1:00 - 3:00 pm) Room: OAK 117 Total Marks: 120 points

Please write your name and student number at the spaces provided:

Name:

Student ID:

- There are twelve (12) written-answer questions here and you are to answer all twelve. Each question is worth 10 points. Your final mark will be divided by 120 to convert to a unit of 100%.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught cheating will be subject to university's disciplinary action.
- Good luck.
- Have a Happy and Healthy Christmas and New Year!

Question	Worth	Score	
1	10		
2	10		
3	10		
4	10		
5	10		
6	10		
7	10		
8	10		
9	10		
10	10		
11	10		
12	10		
Total	120		
%	÷ 120		

Question No. 1:

The mortality pattern for a cohort of newborn can be described by

$$\mu_x = \begin{cases} 0.01, & \text{for } 0 < x \le 40\\ 0.04, & \text{for } x > 40 \end{cases}$$

A medical breakthrough reduces the force of mortality for age beyond 40 by 25%, but will not affect mortality prior to, and including, age 40.

Calculate the percentage improvement in the probability of a 25-year-old reaching to age 65 as a result of this medical breakthrough.

Question No. 2:

For a life (65), you are given the following extract from a life table:

-	
k	ℓ_{65+k}
0	5,000
1	4,900
2	4,700
3	$4,\!400$
4	4,000
5	3,500

Mortality between integer ages is assumed to follow Uniform Distribution of Death (UDD). Calculate the probability that (66) will die between ages 68.25 and 69.40.

Question No. 3:

You are given:

- For age prior to 45, mortality follows a constant force with $\mu = 0.02$.
- For ages 45 and later, mortality follows the Survival Ultimate Life Table.
- *i* = 0.05
- Z is the present value random variable for a whole life insurance of 1 payable at the end of the year of death issued to (40).

Calculate the probability that Z will be greater than 0.6.

Question No. 4:

You are given:

• The following extract from a mortality table:

\overline{x}	95	96	97	98	99	100
ℓ_x	1000	750	-	200	50	0

- v = 0.90
- $\ddot{a}_{95} = 2.2$
- $\ddot{a}_{97} = 1.3$

Calculate ℓ_{97} .

Question No. 5:

A fully discrete whole life insurance of 1000 is issued to (46). You are given:

- \bullet Expenses consist of 10% of annual gross premium in the first year and 5% in subsequent years.
- $A_{45} = 0.15$
- $p_{45} = 0.99$
- *i* = 0.04

Calculate the gross annual premium for this policy.

Question No. 6:

For a special whole life insurance on (50), you are given:

- Death benefit, payable at the end of the year of death, consists of 1000 plus the return of all premiums without interest.
- Annual net premium of 16.95 is payable at the beginning of each year.
- *i* = 0.05
- $(IA)_{50} = 16.97$

Calculate A_{50} .

Question No. 7:

ABC Insurance Company sells 500 fully discrete whole life insurance policies of 1, each with the same age x. You are given:

- All policies have independent future lifetimes.
- *i* = 0.05
- $A_x = 0.270$
- ${}^{2}A_{x} = 0.093$
- Premium is determined according to the portfolio percentile principle, with the probability that the present value of the total future loss on the portfolio is negative is at least 95%.
- The 95th percentile of a standard normal distribution is 1.645.

Calculate the annual premium for each policy.

Question No. 8:

For a 20-year endowment life insurance policy issued to (45), you are given:

- The death benefit of 1000 is payable at the end of the year of death.
- A level premium is paid at the beginning of each year during the term of the policy.
- Mortality follows the Survival Ultimate Life Table.
- *i* = 0.05
- Net premium is calculated according to the actuarial equivalence principle.

Calculate the net premium reserve at the end of year 10.

Question No. 9:

For a fully discrete whole life insurance policy of 10,000 issued to (45), you are given:

- The only expense, incurred at policy issue, is 100.
- Mortality follows the Survival Ultimate Life Table.
- *i* = 0.05
- Gross premium is determined according to the actuarial equivalence principle.

Calculate the gross premium reserve at the end of year 10.

Question No. 10:

For a special single premium 20-year term insurance on (65):

- The death benefit, payable at the end of the year of death, is equal to 2500 plus the net premium reserve.
- $q_{65+k} = 0.02$, for $k = 0, 1, 2, \dots$
- *i* = 0.02

Calculate the single net premium for this insurance.

Question No. 11:

For a fully discrete whole life insurance of 1000 to (50), you are given:

- \bullet Expenses consist of 10% of the annual gross premium in the first year and 5% of the annual gross premium in subsequent years.
- Mortality follows the Survival Ultimate Life Table.
- *i* = 0.05
- The annual gross premium is 17.50.

Calculate the probability of a positive loss at issue.

Question No. 12:

For a fully discrete whole life insurance of 10,000 on (45), you are given:

- The annual benefit premium is 161.45.
- The net premium reserve at the end of 15 years is $_{15}V = 607.55$.
- $q_{59} = 0.016$ and $q_{60} = 0.018$
- i = 0.065
- Deaths are uniformly distributed over integer ages.

Calculate $_{15.6}V$, the net premium reserve at the end of 15.6 years.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK