MATH 3630
Actuarial Mathematics I
Final Examination
Tuesday, 12 December 2017
Time Allowed: 2 hours (1:00-3:00 pm)
Room: MONT 104
Total Marks: 120 points
Please write your name and student number at the spaces provided:
\qquad Student ID:

- There are twelve (12) written-answer questions here and you are to answer all twelve. Each question is worth 10 points. Your final mark will be divided by 120 to convert to a unit of 100%.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught cheating will be subject to university's disciplinary action.
- Best of luck.
- Have a Happy and Healthy Christmas and New Year!

Question	Worth	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
Total	120	
$\%$	$\div 120$	

Question No. 1:
You are given the following survival function of a newborn:

$$
S_{0}(x)=\frac{1}{1+x}, \quad \text { for } x \geq 0
$$

Calculate the force of mortality at age $65, \mu_{65}$.

Question No. 2:

Mortality for a population consisting of females and males follow a select-and-ultimate table, an extract of which is given below. Females have a 3 -year select period while males have a 2 -year select period. Assume mortality follows the Uniform Distribution of Death (UDD) between integral ages.

Females						Males				
x	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	$x+3$	x	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	$x+2$
50	80960	79827	78522	77025	53	50	70764	69124	67224	52
51	79530	78334	76958	75382	54	51	68823	67118	65146	53
52	78021	76760	75312	73655	55	52	66805	65036	62993	54
53	76430	75103	73581	71842	56	53	64711	62879	60768	55
54	74756	73362	71765	69944	57	54	62544	60651	58475	56
55	72998	71535	69863	67958	58	55	60305	58354	56117	57

At select age 50, the population consists of 65% female and 35% male.
Calculate the probability that a randomly chosen person from this population, at select age 50, will survive the next 3.5 years.

Question No. 3:

For a whole life insurance policy issued to (45), you are given:

- Death benefits are payable at the end of the year of death.
- The death benefit is 2 .
- Mortality follows the Illustrative Life Table.
- $i=0.06$
- Z is the present value of the benefit random variable.

Calculate $\operatorname{Var}[Z]$.

Question No. 4:

You are given:

- For age prior to 50 , mortality follows a constant force with $\mu=0.01$.
- For ages 50 and later, mortality is uniformly distributed with $\omega=120$.
- $\delta=5 \%$
- Z is the present value random variable for a whole life insurance of 1 payable at the moment of death issued to (40).

Calculate the probability that Z will be greater than 0.5 .

Question No. 5:

For a 4-year deferred whole life annuity-due of 1 per year issued to (95), you are given:

- The following extract from a mortality table:

x	95	96	97	98	99	100
ℓ_{x}	100	70	40	20	5	0

- $v=0.90$
- Y is the present value random variable for this deferred annuity.

Calculate $\operatorname{Var}[Y]$.

Question No. 6:

Get-a-Life Insurance Company issues a special insurance policy to (45) with the following benefits:

- a death benefit of 2000, payable at the end of year of death, provided death occurs before age 65 , plus
- an annuity benefit that pays 5000 annually starting immediately when the policyholder reaches age 65.

You are given:

- Annual level premiums of P are paid for the first 20 years only (nothing, thereafter) and are determined according to the actuarial equivalence principle.
- $i=0.05$
- $\ddot{a}_{45}=13.96$
- $\ddot{a}_{65}=11.34$
- ${ }_{20} E_{45}=0.26$

Calculate P.

Question No. 7:

A fully discrete whole life policy of 10,000 issued to (35) with level annual premiums is priced with the following expense assumptions:

	\% of Premium	Per 1,000	Per Policy
First year	20%	1.0	15
Renewal years	10%	0.3	5

You are given:

- $i=0.05$
- $\ddot{a}_{35}=15.0$

Calculate the annual gross premium.

Question No. 8:

For a fully discrete whole life insurance policy of $1,000,000$ on (50), you are given:

- Expenses consist of f in the first year and 50 thereafter.
- Mortality follows the Illustrative Life Table.
- $i=0.06$
- The annual gross premium, calculated using the actuarial equivalence principle, is 18,850 .

Calculate f.

Question No. 9:

You are given the following extract of ultimate mortality rates from a two-year select and ultimate mortality table:

x	q_{x}
50	0.045
51	0.050
52	0.055
53	0.060

The select mortality rates satisfy the following:

- $q_{[x]}=0.70 q_{x}$
- $q_{[x]+1}=0.80 q_{x+1}$

You are also given that $i=0.05$.
Calculate $A_{[50]: 3}$.

Question No. 10:

The pricing actuary for an insurance company calculates the premium for a fully discrete whole life insurance of 100 on (65) using the equivalence principle and the assumptions that the force of mortality is constant at 0.10 and $i=0.06$.
The pricing actuary's supervisor believes that the Illustrative Life Table is a better mortality assumption.

Calculate the insurance company's expected loss at issue if the premium is not changed and the supervisor is indeed correct.

Question No. 11:

For a fully discrete 20-year endowment life insurance of 2 issued to (45), you are given:

- Level annual gross premiums are calculated according to the equivalence principle.
- The first year expense is 10% of the gross annual premium.
- Expenses in subsequent years are 4% of the gross annual premium.
- $i=0.04$
- $A_{45: \overline{20}}=0.20$
- ${ }^{2} A_{45: 201}=0.15$
- L_{0}^{g} is the gross loss at issue random variable.

Calculate $\operatorname{Var}\left[L_{0}^{g}\right]$.

Question No. 12:

For a fully discrete whole life insurance of 1000 to (50), you are given:

- Expenses consist of 10% of the annual gross premium in the first year and 5% of the annual gross premium in subsequent years.
- Mortality follows deMoivre's law with $\omega=120$.
- $i=0.05$
- The annual gross premium is 17.50 .

Calculate the probability of a positive loss at issue.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

