MATH 3630
Actuarial Mathematics I
Final Examination
Wednesday, 16 December 2015
Time Allowed: 2 hours (3:30-5:30 pm)
Room: LH 305
Total Marks: 120 points
Please write your name and student number at the spaces provided:
\qquad Student ID:

- There are twelve (12) written-answer questions here and you are to answer all twelve. Each question is worth 10 points. Your final mark will be divided by 120 to convert to a unit of 100%.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.
- Best of luck.
- Have a Happy and Healthy Christmas and New Year!

Question	Worth	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
Total	120	
$\%$	$\div 120$	

Question No. 1:
Suppose that mortality follows the Makeham's law:

$$
\mu_{x}=A+B c^{x}, \quad \text { for } x \geq 0
$$

You are given

- ${ }_{5} p_{40}=0.9392$
- ${ }_{5} p_{45}=0.8954$
- ${ }_{5} p_{50}=0.8232$

Calculate c.

Question No. 2:

In a two-year select and ultimate mortality table, you are given:

- For some positive constant b, we have

$$
q_{[x]}=(1-2 b) \times q_{x} \quad \text { and } \quad q_{[x]+1}=(1-b) \times q_{x+1}
$$

for all $x \geq 0$.

- $\ell_{[40]}=9,000$
- $\ell_{40}=10,000 \quad \ell_{41}=9,000 \quad \ell_{42}=6,300$

Calculate $\ell_{[40]+1}$.

Question No. 3:

You are given:

- For age prior to 50 , mortality follows a constant force with $\mu=0.005$.
- For ages 65 and later, mortality is uniformly distributed with $\omega=110$.
- $\delta=5 \%$
- Z is the present value random variable for a whole life insurance of $\$ 1$ issued to (40), with benefit payable at the end of the year of death.

Calculate the probability that Z will be greater than 0.45 .

Question No. 4:
For a whole life annuity-due issued to (45), you are given:

- For age prior to 65 , deaths are uniformly distributed with ${ }_{20} p_{45}=0.5$.
- $\delta=0.05$
- $A_{65}=0.40$

Calculate \ddot{a}_{65}.

Question No. 5:

For a fully discrete whole life insurance of $\$ 1$ issued to (x), you are given:

- L_{0} is the loss at issue random variable with the premium determined according to the actuarial equivalence principle.
- L_{0}^{*} is the loss at issue random variable with the premium determined such that $\mathrm{E}\left[L_{0}^{*}\right]=c$, for some constant c.
- $\operatorname{Var}\left[L_{0}\right]=0.36$
- $\operatorname{Var}\left[L_{0}^{*}\right]=0.45$

Calculate c.

Question No. 6:

For a special fully discrete 2-year term insurance policy issued to (63), you are given:

- Mortality follows the Illustrative Life Table.
- $i=3 \%$
- The death benefit is $\$ 500$ plus a return of all premiums paid without interest.
- Premiums are calculated based on the actuarial equivalence principle.

Calculate the net annual premium for this policy.

Question No. 7:

Get-a-Life Insurance Company issues a special insurance policy to (50) with the following benefits:

- A death benefit of 100, payable at the end of year of death, provided death occurs before age 65 .
- An annuity benefit that pays 500 annually starting immediately when the policyholder reaches age 65.

You are given:

- Level annual premiums of P are paid for the first 15 years only and are determined according to the actuarial equivalence principle.
- $i=0.05$
- $\ddot{a}_{50}=19.00$
- $\ddot{a}_{65}=18.35$
- ${ }_{15} E_{50}=0.45$

Calculate P.

Question No. 8:

For a fully discrete whole life insurance policy of $\$ 1$ on (40), you are given:

- Net annual premium is calculated according to the equivalence principle.
- Mortality follows the Illustrative Life Table.
- $i=0.06$

Calculate the probability that the policy makes a positive loss.

Question No. 9:

A 30,000 fully discrete whole life policy issued to (35) with level annual premiums is priced with the following expense assumptions:

	\% of Premium	Per 1,000	Per Policy
First year	25%	1.0	50
Renewal years	10%	0.3	25

You are given:

- $i=0.03$
- $\ddot{a}_{35}=28.98$

Calculate the gross annual premium.

Question No. 10:

For a fully discrete whole life insurance of $\$ 1,000$ issued to (x), you are given:

- The net annual premium is $\$ 12$.
- Based on the normal approximation, if n of such policies with independent future lifetimes, were sold, the probability of a loss will be 0.02 .
- $i=0.05$
- $A_{x}=0.24$
- ${ }^{2} A_{x}=0.64$
- The 98 th percentile of the standard normal distribution is 2.054 .

Calculate n.

Question No. 11:

For a fully discrete 10 -year endowment life insurance of $\$ 100$ issued to (35), you are given:

- Level gross annual premiums are calculated according to the equivalence principle.
- The first year expense is 20% of the gross annual premium.
- Expenses in subsequent years are 5% of the gross annual premium.
- $i=0.05$
- $A_{35: \overline{10}}=0.60$
- ${ }^{2} A_{35: \overline{10}}=0.40$
- L_{0}^{g} is the gross loss at issue random variable.

Calculate $\operatorname{Var}\left[L_{0}^{g}\right]$.

Question No. 12:
Based on the same mortality and interest assumptions, you are given:

- $\ddot{a}_{65}^{(4)}=10.70191$ using the Woolhouse's approximation with two terms.
- $\ddot{a}_{65}^{(12)}=10.61361$ using the Woolhouse's approximation with three terms.

Calculate $\ddot{a}_{65}^{(6)}$ using the Woolhouse's approximation with three terms.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

