MATH 3630
Actuarial Mathematics I
Class Test 1 - 3:35-4:50 PM
Wednesday, 15 November 2017
Time Allowed: 1 hour and 15 minutes
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught cheating will be subject to university's disciplinary action.

Question No. 1:
For a special whole life insurance of 1 issued to (30) with benefits payable at the end of the year of death, you are given:

- Mortality follows the Illustrative Life Table except for:
- ages between 35 and 45 where mortality has a constant force of 0.001 .
- $i=0.06$
- Z is the present value random variable for this insurance.

Calculate $\operatorname{Var}[Z]$.

Question No. 2:

You are given:

- Mortality follows a constant force of $\mu=0.02$.
- $i=0.05$
- Y is the present value random variable for a 3 -year temporary life annuity-immediate of 1 per year on (x).

Calculate $\operatorname{Var}[Y]$.

Question No. 3:

For a group of 500 lives, each age 65, with independent future lifetimes, you are given:

- Each life is to be paid 5 per month at the beginning of each month, if alive.
- To fund these payments, each life will contribute an amount of c to a fund to support these payments. This contribution is to be made immediately today and only once.
- Y is the present value random variable today of total annuity payments to the 500 lives.
- $i^{(12)}=0.12$
- $A_{65}^{(12)}=0.1196$
- ${ }^{2} A_{65}^{(12)}=0.0395$
- The $95^{\text {th }}$ percentile of a standard normal distribution is 1.645 .

Using the normal approximation, calculate c such that $\operatorname{Pr}[500 c>Y]=0.95$.

Question No. 4:
Based on the same mortality and interest assumptions, you are given:

- $i=0.06$
- $\ddot{a}_{35}^{(4)}=13.9178$ using the Woolhouse's approximation with three terms.
- $\ddot{a}_{35}^{(6)}=13.8759$ using the Woolhouse's approximation with three terms.

Calculate μ_{35}.

Question No. 5:

For a whole life annuity-due of 1 payable at the beginning of each year on (45), you are given:

- Mortality follows de Moivre's law with $\omega=110$.
- $i=0.10$
- Y is the present value random variable for this annuity.

Calculate the probability that Y exceeds 7 .

Question No. 6:

For the country of Zooto, you are given:

- Zooto publishes mortality rates in 2-year intervals, that is mortality rates are of the form: ${ }_{2} q_{2 x}$, for $x=0,1,2, \ldots$
- Deaths are assumed to be uniformly distributed between ages $2 x$ and $2 x+2$, for $x=$ $0,1,2, \ldots$
- ${ }_{2} p_{62}=0.90$
- ${ }_{2} p_{64}=0.88$
- ${ }_{3.75} p_{62.75}=0.79097$

Calculate the probability that a person in Zooto now age 66 will die before reaching age 68 .

Question No. 7:

You are given:

- The following select-and-ultimate mortality table with a 3-year select period:

$[x]$	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	$\mathrm{x}+3$
54	977	972	965	958	57
55	970	965	958	951	58
56	963	957	950	942	59

- Deaths are uniformly distributed between integral ages.
- $i=0.04$
- $1000 A_{[55]+2.5}=535$

Calculate $1000{ }_{2.5 \mid} A_{[55]}$.

Question No. 8:

Tammy is age 65 and just newly retired. She has a total personal savings of F.

She wants guaranteed income while alive. In exchange for a single payment of F, an insurance company promised her an annual payment (at the beginning of each year) of 50,000 with:

- the first 10 payments guaranteed, whether she is alive or not, and
- the subsequent payments made provided she is alive.

You are given:

- $i=0.05$
- $\ddot{a}_{65}=10.263$
- $\ddot{a}_{75}=7.448$
- $\ddot{a}_{65: 10 \mid}=7.095$

Calculate F.

Question No. 9:

You are given:

- Z is the present value random variable at issue for a 25 -year pure endowment of 1 on (x).
- $i=0.065$
- $\operatorname{Var}[Z]=0.09 \mathrm{E}[Z]$

Calculate ${ }_{25} p_{x}$.

Question No. 10:

For a 25 -year term life insurance on (40) with varying benefits, you are given:

- Death benefits are payable at the end of the year of death.
- The benefit amount is:
(i) 1 in the first 10 years of death,
(ii) increasing to 2 for the following 5 years,
(iii) increasing further to 3 for the following 5 years, and
(iv) remaining at 1 until reaching age 65 .
- Mortality follows the Illustrative Life Table.
- $i=0.06$

Calculate the actuarial present value for this insurance.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

