MATH 3630
Actuarial Mathematics I
Class Test 1 - 3:35-4:50 PM
Wednesday, 15 November 2017
Time Allowed: 1 hour and 15 minutes
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught cheating will be subject to university's disciplinary action.

Question No. 1:
You are given:

- The following select-and-ultimate mortality table with a 3 -year select period:

$[x]$	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	$\mathrm{x}+3$
45	1876	1871	1864	1855	48
46	1869	1864	1857	1850	49
47	1862	1856	1849	1841	50

- Deaths are uniformly distributed between integral ages.
- $i=0.06$
- $1000 A_{[47]+2.5}=496$ when $i=0.06$.

Calculate $1000{ }_{2.5 \mid} A_{[47]}$.

Question No. 2:

For the country of Zoopiter, you are given:

- Zoopiter publishes mortality rates in 5 -year intervals, that is mortality rates are of the form: ${ }_{5} q_{5 x}$, for $x=0,1,2, \ldots$
- Deaths are assumed to be uniformly distributed between ages $5 x$ and $5 x+5$, for $x=$ $0,1,2, \ldots$
- ${ }_{5} p_{40}=0.97$
- ${ }_{5} p_{45}=0.94$
- ${ }_{5} p_{50}=0.90$

Calculate the probability that a person in Zoopiter now age 42 will die the next 6.5 years.

Question No. 3:

You are given:

- Z is the present value random variable at issue for an n-year pure endowment of 25 on (x).
- ${ }_{n} p_{x}=0.63$
- $\mathrm{E}[Z]=3.67$

Calculate $\operatorname{Var}[Z]$.

Question No. 4:

Becky is age 65 and just newly retired. She has a total personal savings of $1,000,000$.
She wants guaranteed income while alive. In exchange for a single payment of $1,000,000$, an insurance company promised her an annual payment (at the beginning of each year) of B with:

- the first 10 payments guaranteed, whether she is alive or not, and
- the subsequent payments made provided she is alive.

You are given:

- $i=0.05$
- $\ddot{a}_{65}=10.263$
- $\ddot{a}_{75}=7.448$
- $\ddot{a}_{65: 10 \mid}=7.095$

Calculate B.

Question No. 5:

For a whole life insurance on (40) with varying benefits, you are given:

- Death benefits are payable at the end of the year of death.
- The benefit amount is:
(i) 100 in the first 5 years of death,
(ii) decreasing to 50 for the following 10 years,
(iii) decreasing further to 10 for the following 10 years, and
(iv) decreasing even further to 5 after that until death.
- Mortality follows the Illustrative Life Table.
- $i=0.06$

Calculate the actuarial present value for this insurance.

Question No. 6:

For a special whole life insurance of 1 issued to (30) with benefits payable at the end of the year of death, you are given:

- Mortality follows the Illustrative Life Table except for:
- ages 65 and beyond where mortality has a constant force of 0.01 .
- $i=0.06$
- Z is the present value random variable for this insurance.

Calculate $\operatorname{Var}[Z]$.

Question No. 7:

For a group of 100 lives, each age 65, with independent future lifetimes, you are given:

- Each life is to be paid 1 per month at the beginning of each month, if alive.
- To fund these payments, each life will contribute an amount of c to a fund to support these payments. This contribution is to be made immediately today and only once.
- Y is the present value random variable today of total annuity payments to the 100 lives.
- $i^{(12)}=0.06$
- $A_{65}^{(12)}=0.2965$
- ${ }^{2} A_{65}^{(12)}=0.1191$
- The $95^{\text {th }}$ percentile of a standard normal distribution is 1.645 .

Using the normal approximation, calculate c such that $\operatorname{Pr}[100 c>Y]=0.95$.

Question No. 8:

You are given:

- For a fixed age $x,{ }_{k} p_{x}=(0.92)^{k}$ for $k \geq 0$.
- $i=0.05$
- Y is the present value random variable for a 3 -year temporary life annuity-immediate of 1 per year on (x).

Calculate $\operatorname{Var}[Y]$.

Question No. 9:

For a whole life annuity-due of 5 payable at the beginning of each year on (x), you are given:

- Mortality follows a constant force of $\mu=0.05$.
- $i=0.035$
- Y is the present value random variable for this annuity.

Calculate the probability that Y exceeds 60 .

Question No. 10:
Based on the same mortality and interest assumptions, you are given:

- $i=0.055$
- $\ddot{a}_{50}^{(4)}=11.3470$ using the Woolhouse's approximation with three terms.
- $\ddot{a}_{50}^{(12)}=11.2633$ using the Woolhouse's approximation with three terms.

Calculate $\ddot{a}_{50}^{(6)}$ using the Woolhouse's approximation with two terms.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

