MATH 3630
Actuarial Mathematics I
Class Test 2-3:55-5:25 PM
Wednesday, 31 October 2018
Time Allowed: 1.5 hours
Total Marks: 120 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are twelve (12) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:

Suppose you are now age 25 and a trust fund worth 1 million has been set up for you. The trust fund has been established so that:

- you receive at the beginning of each year an amount equal to 50,000 while you are alive, and
- your beneficiary receives 1 million at the end of the year of your death.

Assume that your mortality follows the Survival Ultimate Life Table and $i=0.05$.
Calculate the actuarial present value of your trust fund. Explain, in words, why this value is higher, equal to, or lower than 1 million.

Question No. 2:

For a whole life insurance of 10 on (45) with death benefit payable at the end of the year of death, let Z be the present value random variables for this insurance. You are given:

- $q_{44}=0.015$
- $v=0.962$
- $\frac{A_{45}}{A_{44}}=1.028$
- $\frac{{ }^{2} A_{45}}{{ }^{2} A_{44}}=1.051$

Calculate the standard deviation of Z.

Question No. 3:

For a special life insurance issued to (40), you are given:

- Death benefits are payable at the moment of death.
- The benefit amount is 200 in the in the first 10 years of death, decreasing to 50 after that until reaching age 65 .
- An endowment benefit of 500 is paid upon reaching age 65 .
- There are no benefits to be paid past the age of 65 .
- Mortality follows the Standard Ultimate Life Table at $i=0.05$.
- Deaths are uniformly distributed over each year of age.

Calculate the actuarial present value for this insurance.

Question No. 4:
Mortality is based on the following select and ultimate life table:

x	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	$x+3$
50	5000	4881	4689	4486	53
51	4544	4368	4215	4047	54
52	4096	4009	3889	3731	55

Interest rate is $i=0.05$.
Calculate $A_{[50]: 5}$.

Question No. 5:

Mr. Ow Sum is currently age 40. His mortality follows De Moivre's law with $\omega=110$.
He buys a temporary life insurance policy that pays him a benefit of $\$ 100$ at the moment of his death, if he dies within the next 25 years. No benefits are made if death occurs after 25 years.
You are given that $i=3.5 \%$.
Calculate the actuarial present value of his death benefit.

Question No. 6:

The following is an extract from a life table:

x	ℓ_{x}
95	15,000
96	12,500
97	9,000

You are given: $\ddot{a}_{95}=1.785$ and $\ddot{a}_{96}=1.186$
Calculate i.

Question No. 7:

Each of 150 lives with independent future lifetimes are now age 50 and purchases a whole life insurance of 10 payable at the end of the year of death.

You are given:

- $A_{50}=0.332$
- ${ }^{2} A_{50}=0.169$
- Each of the 150 lives pays a one-time premium of c.
- These premiums are calculated so that the probability the insurer has sufficient funds to pay all claims is 0.95 .
- The 95 th percentile of the standard Normal distribution is 1.645 .

Calculate c using the normal approximation.

Question No. 8:
You are given:

- $i=0.05$
- ${ }_{25} q_{40}=0.3115$
- $\ddot{a}_{40: \overline{25}}=1.045 \times a_{40: \overline{25}}$

Calculate $a_{40: \overline{24}}$.

Question No. 9:

For a whole life annuity immediate of 100 per year on (67), you are given:

- Mortality follows the Survival Ultimate Life Table.
- $i=0.05$
- Y is the present value random variable for this annuity.

Calculate the probability that Y will exceed 1200 .

Question No. 10:
You are given:

- The following is an extract from a life table:

x	ℓ_{x}	μ_{x}
60	1000	0.0024
61	994	0.0026
62	988	0.0030
63	978	0.0045

- $i=0.05$
- Life annuities are approximated using the Woolhouse's formula with three terms.

Calculate $\ddot{a}_{60: \overline{3} \mid}^{(12)}$.

Question No. 11:

For a whole life annuity-due on (40), you are given:

- Before age 65, mortality follows a constant force $\mu=0.004$.
- For age 65 and beyond, mortality follows the Survival Ultimate Life Table.
- Interest rate $i=0.10$ for the next 25 years and $i=0.05$ thereafter.

Calculate \ddot{a}_{40}.

Question No. 12:

For a cohort of individuals all age x consisting of non-smokers (ns) and smokers (sm), you are given:

- Mortality is based on the following:

k	$q_{x+k}^{\text {ns }}$	$q_{x+k}^{\text {sm }}$
0	0.01	0.08
1	0.03	0.12

- $i=0.05$
- $A_{x: \overline{2} \mid}^{1}=0.0616$ for a randomly chosen individual from this cohort

Determine the proportion of non-smokers and smokers in this cohort at age x.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

