MATH 3630
Actuarial Mathematics I
Class Test 1 - 3:35-5:25 PM
Wednesday, 18 September 2019
Time Allowed: 1.5 hours
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
You are given the following survival function of a newborn:

$$
S_{0}(x)=\left(1-\frac{x}{105}\right)^{1 / 5}, \quad \text { for } 0<x \leq 105
$$

Explain why this is a legitimate survival function.

Question No. 2:

You are given:

- The probability that (35) survives to reach age 50 is 0.83 .
- The probability that (35) dies between age 50 and 65 is 0.15 .

Calculate the probability that (35) survives to reach age 65.

Question No. 3:

Suppose the survival function for a newborn is given by

$$
S_{0}(x)=e^{-0.002 x^{2}}, \quad \text { for } x \geq 0
$$

Calculate μ_{35}.

Question No. 4:
Mortality follows the Generalized De Moivre's law expressed as:

$$
S_{0}(x)=\left(1-\frac{x}{100}\right)^{2 / 3}, \text { for } 0<x \leq 100
$$

Calculate ${ }_{10 \mid 20} q_{20}$ and interpret this probability.

Question No. 5:

For a fixed age x, you are given the following probabilities:

- $p_{x}=0.98$
- $p_{x+1}=0.97$
- ${ }_{3} p_{x+1}=0.866$
- $q_{x+3}=0.06$

Calculate ${ }_{3} p_{x}$.

Question No. 6:

In a population consisting of 60% males and 40% females, you are given:

- Mortality for females has a constant force of μ.
- Mortality for males also has a constant force of 3μ, three times that of females.
- Out of the survivors at the end of 10 years, the proportion of males is 50%.

Calculate the probability a female, of any age, survives a year.

Question No. 7:
You are given:

- $\stackrel{\circ}{e}_{30}=51.50, \quad \stackrel{\circ}{e}_{35}=46.68, \quad$ and $\quad \stackrel{\circ}{e}_{40}=41.91$
- $\stackrel{\circ}{e}_{30: 51}=4.988$ and $\stackrel{\circ}{e}_{30: \overline{10}}=9.963$

Calculate ${ }_{5} p_{35}$.

Question No. 8:

The cumulative distribution function of T_{50}, the future lifetime of (50), is expressed as

$$
F_{50}(t)=1-\left(1-\frac{t}{55}\right)^{1 / 5} \quad, \text { for } 0<t \leq 55
$$

Calculate the probability that (65) dies between age 90 and 100 .

Question No. 9:

The force of mortality for a substandard life (x) is expressed as

$$
\mu_{x+t}^{s}=\mu_{x+t}+c,
$$

for some constant $c>0$, where μ_{x+t} is the force of mortality of a standard life (x). You are given:

- The probability that a standard life (x) survives the next 5 years is 0.75 .
- The probability that a substandard life (x) survives the next 5 years is 0.40 .

Calculate the value of c.

Question No. 10:
You are given:

$$
\mu_{x}= \begin{cases}0.05, & 0<x \leq 50 \\ 0.10, & x>50\end{cases}
$$

Calculate ${ }_{e}{ }_{35: \overline{30}}$.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

