MATH 3630 Actuarial Mathematics I Class Test 1 - 3:55-5:25 PM Wednesday, 26 September 2018 Time Allowed: 1.5 hours Total Marks: 120 points

Please write your name and student number at the spaces provided:

Name:

Student ID:

- There are twelve (12) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:

You are given the following survival function of a newborn:

$$S_0(x) = \exp\left[-(x/8)^{1/2}\right], \text{ for } x \ge 0.$$

Calculate $_{15|20}q_{25}$ and interpret this probability.

Question No. 2:

You are given:

- $_5p_{40} = 0.95$
- $_5p_{45} = 0.90$
- $\ell_{40} = 10,000$

Calculate ${}_{5}d_{45}$.

Question No. 3:

In a population of newborn consisting of 75% males and 25% females, you are given:

- Mortality for males follow De Moivre's law with $\omega = 90$.
- Mortality for females follow De Moivre's law with $\omega = 120$.

At what age will there be exactly equal proportions of male and female?

Question No. 4:

Let X be the age-at-death random variable with

$$\mu_x = \frac{1}{3(110 - x)}, \text{ for } 0 \le x < 110.$$

Find an expression for $f_{40}(t)$, the density function of future lifetime of (40).

Question No. 5:

For a life (x), you are given the following extract from a life table:

k	ℓ_{x+k}
0	10,000
1	9,900
2	9,700
3	9,400
4	9,000
5	8,500

Calculate the probability that (x + 1) will die between ages x + 4 and x + 5.

Question No. 6:

Suppose you are given the following extract from a life table:

\overline{x}	ℓ_x
95	15,000
96	12,500
97	9,000
98	4,500
99	1,500
100	100
101	0

Calculate e_{96} .

Question No. 7:

You are given:

$$_{k|}q_{x}=\frac{1}{9}(2k+1), \ \, \text{for} \ \, k=0,1 \ \text{and} \ 2.$$

Suppose Uniform Distribution of Death (UDD) holds between integral ages.

Calculate the probability that a life (x) will survive another 1.5 years.

Question No. 8:

You are given:

- The probability that (40) will live for the next 10 years is 0.80.
- The probability that (40) dies between ages 50 and 75 is 0.25.
- $\ell_{75} = 7,200$

Calculate ℓ_{50} .

Question No. 9:

The force of mortality for a substandard life (x) is expressed as

$$\mu_{x+t}^s = \mu_{x+t} + a,$$

for some constant a > 0, where μ_{x+t} is the force of mortality of a standard life (x). You are given:

- The probability that a standard life (x) survives the next 10 years is 0.70.
- The probability that a substandard life (x) survives the next 10 years is 0.63.

Calculate the value of the constant a.

Question No. 10:

You are given:

 $\ell_{90} = 10,000$ $\ell_{91} = 9,000$ $\ell_{92} = 7,500$ $\ell_{93} = 5,500$

Suppose that constant force of mortality assumption holds between integral ages.

Calculate $_{1.5|0.75}q_{90}$.

Question No. 11:

You are given:

- $\mathring{e}_{30} = 51.50$, $\mathring{e}_{35} = 46.68$, and $\mathring{e}_{40} = 41.91$
- $\mathring{e}_{30:\overline{5}|} = 4.988$ and $\mathring{e}_{30:\overline{10}|} = 9.963$

Calculate $_5p_{35}$.

Question No. 12:

For a life (x), you are given $\ell_x = 100,000$ and the following extract from a life table:

k	d_{x+k}
0	1,000
1	1,500
2	2,100
3	$3,\!000$
4	2,000

Calculate $_{2|}q_{x+1}$.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK