MATH 3630
Actuarial Mathematics I
Class Test 1 - 3:55-5:25 PM
Wednesday, 26 September 2018
Time Allowed: 1.5 hours
Total Marks: 120 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are twelve (12) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
You are given the following survival function of a newborn:

$$
S_{0}(x)=\exp \left[-(x / 8)^{1 / 2}\right], \quad \text { for } x \geq 0
$$

Calculate ${ }_{15 \mid 20} q_{25}$ and interpret this probability.

Question No. 2:
You are given:

- ${ }_{5} p_{40}=0.95$
- ${ }_{5} p_{45}=0.90$
- $\ell_{40}=10,000$

Calculate ${ }_{5} d_{45}$.

Question No. 3:

In a population of newborn consisting of 75% males and 25% females, you are given:

- Mortality for males follow De Moivre's law with $\omega=90$.
- Mortality for females follow De Moivre's law with $\omega=120$.

At what age will there be exactly equal proportions of male and female?

Question No. 4:

Let X be the age-at-death random variable with

$$
\mu_{x}=\frac{1}{3(110-x)}, \quad \text { for } 0 \leq x<110
$$

Find an expression for $f_{40}(t)$, the density function of future lifetime of (40).

Question No. 5:

For a life (x), you are given the following extract from a life table:

k	ℓ_{x+k}
0	10,000
1	9,900
2	9,700
3	9,400
4	9,000
5	8,500

Calculate the probability that $(x+1)$ will die between ages $x+4$ and $x+5$.

Question No. 6:

Suppose you are given the following extract from a life table:

x	ℓ_{x}
95	15,000
96	12,500
97	9,000
98	4,500
99	1,500
100	100
101	0

Calculate e_{96}.

Question No. 7:

You are given:

$$
{ }_{k} \left\lvert\, q_{x}=\frac{1}{9}(2 k+1)\right., \text { for } k=0,1 \text { and } 2
$$

Suppose Uniform Distribution of Death (UDD) holds between integral ages.
Calculate the probability that a life (x) will survive another 1.5 years.

Question No. 8:

You are given:

- The probability that (40) will live for the next 10 years is 0.80 .
- The probability that (40) dies between ages 50 and 75 is 0.25 .
- $\ell_{75}=7,200$

Calculate ℓ_{50}.

Question No. 9:

The force of mortality for a substandard life (x) is expressed as

$$
\mu_{x+t}^{s}=\mu_{x+t}+a,
$$

for some constant $a>0$, where μ_{x+t} is the force of mortality of a standard life (x). You are given:

- The probability that a standard life (x) survives the next 10 years is 0.70 .
- The probability that a substandard life (x) survives the next 10 years is 0.63 .

Calculate the value of the constant a.

Question No. 10:
You are given:

$$
\ell_{90}=10,000 \quad \ell_{91}=9,000 \quad \ell_{92}=7,500 \quad \ell_{93}=5,500
$$

Suppose that constant force of mortality assumption holds between integral ages.
Calculate ${ }_{1.5 \mid 0.75} q_{90}$.

Question No. 11:
You are given:

- $\stackrel{\circ}{e}_{30}=51.50, \quad \dot{e}_{35}=46.68, \quad$ and $\quad \stackrel{\circ}{e}_{40}=41.91$
- $\dot{e}_{30: 51}=4.988$ and $\stackrel{\circ}{e n}_{30: \overline{10}}=9.963$

Calculate ${ }_{5} p_{35}$.

Question No. 12:
For a life (x), you are given $\ell_{x}=100,000$ and the following extract from a life table:

k	d_{x+k}
0	1,000
1	1,500
2	2,100
3	3,000
4	2,000

Calculate ${ }_{2 \mid} q_{x+1}$.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

