MATH 3630
Actuarial Mathematics I
Class Test 1 - 3:35-4:50 PM
Wednesday, 27 September 2017
Time Allowed: 1 hour
Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
In a population today, all of equal age x, consisting of 25% non-smokers and 75% smokers, you are given:

- Mortality for non-smokers follows a constant force of mortality of 0.01 .
- Mortality for smokers follows a constant force of mortality of $0.01 h$, for some positive h.
- In 55 years, there will exactly be equal proportions of non-smokers and smokers.

Calculate h.

Question No. 2:
You are given:

- ${ }_{5} p_{x}=0.96$
- ${ }_{8} p_{x}=0.90$

Calculate ${ }_{3} q_{x+5}$.

Question No. 3:

You are given the following survival function of a newborn:

$$
S_{0}(x)=\exp \left[-(2 x / 15)^{3 / 4}\right], \quad \text { for } x \geq 0
$$

Calculate the force of mortality at age $45, \mu_{45}$.

Question No. 4:
For a life (x), you are given the following extract from a life table:

k	ℓ_{x+k}
0	10,000
1	9,875
2	9,625
3	9,275
4	8,775
5	8,025

Calculate ${ }_{3 \mid 2} q_{x}$ and interpret this probability.

Question No. 5:

You are given:

- Mortality follows De Moivre's law with parameter ω.
- $\dot{e}_{20: \overline{20}}=18$

Calculate ${ }_{30 \mid 10} q_{30}$.

Question No. 6:

Suppose you are given the following extract from a life table:

x	ℓ_{x}
94	15,000
95	12,500
96	8,750
97	4,375
98	1,530
99	380
100	40
101	0

Calculate e_{95}.

Question No. 7:

You are given:

- The probability that (35) survives to reach age 50 is 0.83 .
- The probability that (35) dies between the ages of 50 and 65 is 0.15 .
- $\ell_{65}=6800$

Calculate ℓ_{35}.

Question No. 8:

Mortality follows the Generalized De Moivre's law expressed as:

$$
S_{0}(x)=\left(1-\frac{x}{100}\right)^{1 / 2}, \text { for } 0 \leq x \leq 100
$$

Calculate the probability that life (35) will die between ages 50 and 65.

Question No. 9:

The force of mortality for a substandard life (x) is expressed as

$$
\mu_{x+t}^{s}=\mu_{x+t}+a,
$$

for some constant $a>0$, where μ_{x+t} is the force of mortality of a standard life (x). You are given:

- The probability that a standard life (x) survives the next 10 years is 0.70 .
- The probability that a substandard life (x) survives the next 10 years is 0.63 .

Calculate the value of the constant a.

Question No. 10:
Please complete the rest of the life table below:

x	ℓ_{x}	d_{x}	p_{x}	q_{x}
96	100			
97	85			
98	65			
99	35			
100	0			na

na $=$ not applicable

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

