MATH 3630 Actuarial Mathematics I Class Test 1 - 3:35-4:50 PM Wednesday, 28 September 2016 Time Allowed: 1 hour Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name:

Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:

You are given:

$$\mu_x = \begin{cases} 0.01, & 0 < x < 30\\ 0.02, & x \ge 30 \end{cases}$$

Calculate the probability that a 25-year-old will survive another 25 years.

Question No. 2:

In a population of newborn consisting of 70% males and 30% females, you are given:

- Mortality for males follow De Moivre's law with $\omega = 100$.
- Mortality for females follow De Moivre's law with $\omega = 120$.

At what age will there be exactly equal proportions of male and female?

Question No. 3:

For a life (x), you are given $\ell_x = 10,000$ and the following extract from a life table:

k	d_{x+k}
0	125
1	250
2	350
3	500
4	750
5	985

Calculate $_{3|}q_{x+1}$ and interpret this probability.

Question No. 4:

An organism has a very short lifetime with its mortality described by the force of mortality

$$\mu_x = \frac{2}{1+x}, \quad \text{for } x \ge 0$$

Calculate the probability that such an organism who has lived one year will survive another two years.

Question No. 5:

You are given:

- The probability that (30) survives to reach age 50 is 0.75.
- The probability that (30) dies between the ages of 50 and 65 is 0.15.
- $\ell_{30} = 1000$

Calculate ℓ_{65} .

Question No. 6:

Mortality of a newborn follows the Generalized De Moivre's law expressed as:

$$S_0(x) = \left(1 - \frac{x}{100}\right)^{2/5}$$
, for $0 \le x \le 100$.

Calculate the median lifetime of a 50-year-old.

Question No. 7:

Suppose you are given the following extract from a life table:

\overline{x}	ℓ_x
94	15,000
95	12,500
96	8,750
97	4,375
98	1,530
99	380
100	40
101	0

Calculate $_{2\mid 3}q_{95}.$

Question No. 8:

Suppose you are given:

$$\mu_x = \begin{cases} 0.02, & 0 < x < 35\\ 0.04, & x \ge 35 \end{cases}$$

Calculate $\mathring{e}_{25:\overline{25}|}$.

Question No. 9:

For a fixed age x, you are given the following probabilities:

- $p_x = 0.95$
- $_{3}q_{x} = 0.24$

Calculate the probability that (x + 1) will not survive the following two years.

Question No. 10:

The force of mortality for a substandard life (x) is expressed as

$$\mu_{x+t}^s = \mu_{x+t} + a,$$

for some constant a > 0, where μ_{x+t} is the force of mortality of a standard life (x). You are given:

- The probability that a standard life (x) survives the next 20 years is 0.50.
- The probability that a substandard life (x) survives the next 20 years is 0.25.

Calculate the value of the constant a.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK