MATH 3630
Actuarial Mathematics I
Class Test 1 - 3:35-4:50 PM
Wednesday, 28 September 2016
Time Allowed: 1 hour
Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
You are given:

$$
\mu_{x}= \begin{cases}0.01, & 0<x<30 \\ 0.02, & x \geq 30\end{cases}
$$

Calculate the probability that a 25 -year-old will survive another 25 years.

Question No. 2:

In a population of newborn consisting of 70% males and 30% females, you are given:

- Mortality for males follow De Moivre's law with $\omega=100$.
- Mortality for females follow De Moivre's law with $\omega=120$.

At what age will there be exactly equal proportions of male and female?

Question No. 3:

For a life (x), you are given $\ell_{x}=10,000$ and the following extract from a life table:

k	d_{x+k}
0	125
1	250
2	350
3	500
4	750
5	985

Calculate ${ }_{3 \mid} q_{x+1}$ and interpret this probability.

Question No. 4:

An organism has a very short lifetime with its mortality described by the force of mortality

$$
\mu_{x}=\frac{2}{1+x}, \text { for } x \geq 0
$$

Calculate the probability that such an organism who has lived one year will survive another two years.

Question No. 5:

You are given:

- The probability that (30) survives to reach age 50 is 0.75 .
- The probability that (30) dies between the ages of 50 and 65 is 0.15 .
- $\ell_{30}=1000$

Calculate ℓ_{65}.

Question No. 6:

Mortality of a newborn follows the Generalized De Moivre's law expressed as:

$$
S_{0}(x)=\left(1-\frac{x}{100}\right)^{2 / 5}, \text { for } 0 \leq x \leq 100
$$

Calculate the median lifetime of a 50-year-old.

Question No. 7:

Suppose you are given the following extract from a life table:

x	ℓ_{x}
94	15,000
95	12,500
96	8,750
97	4,375
98	1,530
99	380
100	40
101	0

Calculate ${ }_{2 \mid 3} q_{95}$.

Question No. 8:

Suppose you are given:

$$
\mu_{x}= \begin{cases}0.02, & 0<x<35 \\ 0.04, & x \geq 35\end{cases}
$$

Calculate ${ }^{\circ}{ }_{25: 25}$.

Question No. 9:

For a fixed age x, you are given the following probabilities:

- $p_{x}=0.95$
- ${ }_{3} q_{x}=0.24$

Calculate the probability that $(x+1)$ will not survive the following two years.

Question No. 10:
The force of mortality for a substandard life (x) is expressed as

$$
\mu_{x+t}^{s}=\mu_{x+t}+a,
$$

for some constant $a>0$, where μ_{x+t} is the force of mortality of a standard life (x). You are given:

- The probability that a standard life (x) survives the next 20 years is 0.50 .
- The probability that a substandard life (x) survives the next 20 years is 0.25 .

Calculate the value of the constant a.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

