MATH 3630
Actuarial Mathematics I
Class Test 1 - 3:35-4:50 PM
Wednesday, 30 September 2015
Time Allowed: 1 hour
Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
For a life (x), you are given $\ell_{x}=20,000$ and the following extract from a life table:

k	d_{x+k}
0	250
1	500
2	700
3	1000
4	1500

Calculate ${ }_{1 \mid 2} q_{x+1}$ and interpret this probability.

Question No. 2:

Suppose the force of mortality is:

$$
\mu_{x}=c+e^{x}, \quad \text { for } x \geq 0 \text { and } c>0 .
$$

You are given: $p_{0}=0.1623$.
Calculate the value of c.

Question No. 3:

You are given:

- The probability that (35) survives to reach age 50 is 0.83 .
- The probability that (35) dies between the ages of 50 and 65 is 0.15 .
- $\ell_{65}=6800$

Calculate ℓ_{35}.

Question No. 4:
You are given:

$$
q_{65+k}=0.02, \text { for } k=0,1,2, \ldots
$$

Calculate e_{65}, the curtate expectation of life for a person age 65 .

Question No. 5:

Suppose the survival function for a newborn is given by

$$
S_{0}(x)=e^{-0.002 x^{2}}, \quad \text { for } x \geq 0
$$

Calculate μ_{40}.

Question No. 6:

Mortality follows the Generalized De Moivre's law expressed as:

$$
S_{0}(x)=\left(1-\frac{x}{100}\right)^{2 / 3}, \text { for } 0 \leq x \leq 100
$$

Calculate the probability that life (20) will die between ages 30 and 50 .

Question No. 7:

Suppose you are given the following extract from a life table:

x	ℓ_{x}
94	15,000
95	12,500
96	8,750
97	4,375
98	1,530
99	380
100	40
101	0

Calculate $e_{97: 3 \mid}$.

Question No. 8:

The force of mortality for a substandard life (x) is expressed as

$$
\mu_{x+t}^{s}=\mu_{x+t}+c,
$$

for some constant $c>0$, where μ_{x+t} is the force of mortality of a standard life (x). You are given:

- The probability that a standard life (x) survives the next 5 years is 0.75 .
- The probability that a substandard life (x) survives the next 5 years is 0.40 .

Calculate the value of c.

Question No. 9:

For a fixed age x, you are given the following probabilities:

- $p_{x}=0.98$
- $p_{x+1}=0.97$
- ${ }_{3} p_{x+1}=0.866$
- $q_{x+3}=0.06$

Calculate ${ }_{3} p_{x}$.

Question No. 10:
In a population consisting of 60% males and 40% females, you are given:

- Mortality for females has a constant force of μ.
- Mortality for males also has a constant force of 3μ, three times that of females.
- Out of the survivors at the end of 10 years, the proportion of males is 50%.

Calculate the probability a female, of any age, survives a year.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

