$v=\frac{1}{1+i}$
$P V=B v^{T_{x}}$
ratim
varath
Insurance Benefits
$E[P V]=$ expects
Persent V-lue
of berefts
Lecture: Weeks 6-7
financil matteratios
$\frac{\text { statistion }}{\text { life insmane }}$
mothoti
$=$ Actuarid Present V-lie
die-

- Insurance Benefits
- Central theme: to quantify the value today of a (random) amount to be paid at a random time in the future.
- main application is in life insurance contracts, but could be applied in other contexts, egg. warranty contracts.
- Generally computed in two steps:
(1) take the present value (PV) random variable, $b_{T} v_{T}$; and ${ }^{\prime}$
(2) calculate the expected value $\mathrm{E}\left[b_{T} v_{T}\right]$ for the average value - this value is referred to as the Actuarial Present Value (APV).
- In general, we want to understand the entire distribution of the PV random variable $b_{T} v_{T}$:
- it could be highly skewed, in which case, there is danger to use expectation.
- other ways of summarizing the distribution such as variances and percentiles/quantiles may be useful.
$b_{T} V_{T}$ is a ramlom vaiM

$$
\begin{aligned}
& E\left(b_{T} V_{T}\right) \\
& \operatorname{Var}\left(b_{T} V_{T}\right)
\end{aligned}
$$

quarth of $b_{T} V_{T}$ 0.5. $95^{\text {H }}$ quantin

A simple illustration

Consider the simple illustration of valuing a three-year term insurance policy issued to ag 35 where if he dies within the first year, a \$1,000 benefit is payable at the end of his year of death.
If he dies within the second year, a $\$ 2,000$ benefit is payable at the end of his year of death. If he dies within the third year, a $\$ 5,000$ benefit is payable at the end of his year of death.
Assume a constant interest rate (annual effective) of 5% and the following extract from a mortality table:

x	q_{x}
35	0.005
36	0.006
37	0.007
38	0.008

Calculate the APV of the benefits.

$$
\begin{aligned}
& i=5 \% \quad v=\frac{1}{1.05} \\
& \underbrace{1000}_{35} \\
& \underbrace{1000 * g_{35} \cdot v}+\underbrace{2000 * p_{35}=g_{36} \cdot v^{2}} \\
& +5000 * p_{35} \times p_{36} \times q_{37} \cdot v^{3} \\
& \mathrm{APV} \text { (bencfib) using interiti- discrate. }_{\text {AP }}^{\text {and }} \\
& 1000\left[.005\left(\frac{1}{1.05}\right)+2 \times(1-.005) .006\left(\frac{1}{1.05}\right)^{2}\right. \\
& \left.+5 \times(1-.005)(1-.006) .007\left(\frac{1}{1.05}\right)^{3}\right] \\
& 45.49448 \\
& \text { probasility you de! }
\end{aligned}
$$

Chapter summary

- Life insurance
- benefits payable contingent upon death; payment made to a designated beneficiary
- actuarial present values (APV)
- actuarial symbols and notation
- Insurances payable at the moment of death
- continuous

$$
T_{x}
$$

- level benefits, varying benefits (e.g. increasing, decreasing)
- Insurances payable at the end of year of death
- discrete ${ }^{\prime}$
- level benefits, varying benefits (e.g. increasing, decreasing)
- Chapter 4, DHW

The present value random variable

- Denote by (Z, the present value random variable. ${ }^{x}$
- This gives the value, at policy issue, of the benefit payment. Issue age is usually denoted by x.
- In the case where the benefit is payable at the moment of death, Z clearly depends on the time-until-death T. For simplicity, we drop the subscript x for age-at-issue.
- It is $Z=b_{T} v_{T}$ where:
ρb_{T} is called the benefit payment function

$$
v_{T}=v^{\top}=\left(\frac{1}{1+c}\right)^{t}-
$$

ρv_{T} is the discount function

- In the case where we have a constant (fixed) interest rate, then

$$
v_{T}=v^{T}=\frac{(1+i)^{-T}}{\int_{\mathcal{M}}}=e^{-\delta T}=
$$

$$
1+i=e^{\delta}
$$

$$
Z=\underbrace{\text { present value random vanible }}_{\begin{array}{c}
\text { value of your chsuraine } \\
\text { benefit upon death. }
\end{array}}
$$

$Z=b_{T} V_{T}, \quad T$ is random

(x)
$[x]$

$$
\begin{aligned}
& i, \delta \\
& v_{F}=v^{\top}=\left(\frac{1}{1+i}\right)^{T} \\
&=e^{-\delta T}
\end{aligned}
$$

$T \rightarrow$ density,

n-year term insurance policy

- provide you benefit upon doth, so long as you die with at the moment of worth nears

$$
\begin{aligned}
& Z= \begin{cases}v^{\top}, & T \leqslant n \\
0, & T>n\end{cases} \\
& \underbrace{1}_{0} \\
& =v^{\top} I(T \leq n) \\
& \operatorname{APV}\left(n_{\text {year term }}\right)=E\left[V^{\top} I(T \leq n)\right] \\
& I(A)= \begin{cases}1, & \text { if } A \text { is blue } \\
0, & \text { if } A \text { is folic }\end{cases} \\
& =\int_{0}^{\infty} v^{t} J(t \leq n)+p_{x} \mu_{x+t} d t \\
& E[Z]=\underbrace{\int_{0}^{n} v^{t} t p_{x} \mu_{x+t} d t}=\bar{A}_{x}^{\prime}: \bar{n}] \begin{array}{c}
A P V \text { of an } \\
n-y \text { ear tern } \\
\text { of } \$ 1 \text { if } \\
\text { benefit }
\end{array}
\end{aligned}
$$

j th rule of momest $E\left[Z^{j}\right]=E[Z] @ j \delta$ evaluds at is
$n \rightarrow \infty$ whole life insurance
an insmance poliy thet pays at the moment of decth $b_{T}=1$,

$$
\begin{aligned}
& Z=v^{\top} \underbrace{I(T \leq \infty)}=v^{\top} \\
& E[2]=\int_{0}^{\infty} v^{t}{ }^{I} p_{x} \mu_{x+t} d t=\bar{A}_{x} \\
& \operatorname{Var}(Z)={ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}
\end{aligned}
$$

Pure Endowment is an irsmance policy thet pays
n-yéar a bencitit if you an alin et the end
of n years

$$
\begin{aligned}
& Z= \begin{cases}0, & T \leqslant n \\
v^{n}, & T>n\end{cases} \\
& z=v^{n} \underbrace{\text { vande }}_{\text {binary rantion }} \\
& I(T>n) \sim \operatorname{Bernoulli}(p) \\
& P=\underbrace{P} \text { APVof an } n \text {-year } \begin{array}{c}
\text { prese onto onent }
\end{array} \\
& E[z]=E\left[v^{n} I(T>n)\right]=v^{n} \cdot n p_{x} \\
& \text { (x) } \\
& I(T>n) \sim \operatorname{Bernoulli}(p) \\
& \text { pare onlonont } \\
& \operatorname{Var}(z)=V^{\operatorname{Var}\left(V^{n} I(T>n)\right)=v^{2 n} \cdot n p_{x}\left(1-n p_{x}\right)}
\end{aligned}
$$

Symbols
(1) $\quad \operatorname{APV}\binom{n-$ year pure }{ untwout }$=A_{x: n} \frac{1}{n}=v^{n} n P_{x}$

(2)

$$
\begin{aligned}
& Y \cdot \underbrace{}_{V_{n}{ }_{n} P_{x}}=V_{p V}^{V} \\
& F V{ }_{p}^{d} \\
& Y=V / n E_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { pure + term } \\
& \overbrace{\text { endowment is dance }} \\
& Z=\underbrace{ \begin{cases}v^{\top}, & T \leq n, \\
v^{n}, & T>n\end{cases} }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{A}_{x: n]}=\bar{A}_{x: n}+A_{x: n} \\
& \operatorname{Var}(z)=\underbrace{{ }^{2} \bar{A}_{x: n}}_{c^{2} 2 \delta}-(\bar{A} \times: n)^{2} \\
& Y=V / n E_{x} \\
& /=V /{ }_{v}{ }_{n} p_{x} \\
& F V=V_{P V}^{V}(1+i)^{n}\left(\frac{1}{n p_{x}}\right) \\
& n E_{x} \text { is a discount fou } \underline{6}
\end{aligned}
$$

n-year puesendowrect variate $C 2 \delta$

$$
\begin{aligned}
& Z=V^{n} I(T>n)=\left\{\begin{array}{cl}
0, & T \leqslant n \\
V^{n}, & T>n
\end{array}\right. \\
& \begin{aligned}
\operatorname{Var}(z) & =\underbrace{E\left[z^{2}\right]}-(E[z])^{2} \\
& =v^{2 n} \cdot p_{x}-\left(v^{n} n p_{x}\right)^{2}
\end{aligned} \\
& E[z]=A_{x}: n^{\prime} \\
& =v^{n} \cdot \underbrace{n_{x}} \\
& \frac{{ }^{2} A_{x: n}}{C_{2 \delta}} \\
& =v^{2 n} n \underline{p}_{x}-v^{2 n}\left({ }_{n} \underline{p}_{x}\right)^{2} \\
& 2 \delta \text { rule } \\
& \text { holds. }
\end{aligned}
$$

$$
\begin{aligned}
& 4 \text { conventional policies }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2} \\
& \underbrace{A_{x: n}^{\prime}-\left(A_{x} \cdot \frac{1}{n}\right)^{2}}_{v^{2 n} \cdot n p_{x}\left(1-n P_{x}\right)} \\
& { }^{2} \bar{A}_{x: n]}-\left(\bar{A}_{x: n}\right)^{2}
\end{aligned}
$$

Lifetime is exponential, (constant frae μ)

$$
f_{T}(t)=t p_{x} \mu_{x+t}=\mu e^{-\mu t}
$$

n-year term $\quad \bar{A}_{\dot{x}: n=}=\int_{0}^{n} v^{t} \cdot \mu e^{-\mu t} d t \quad v=e^{-\delta}$

$$
=\frac{\mu}{\mu+\delta} \int_{0}^{n} \frac{e^{-\delta t} e^{-\mu t}}{e^{-(\mu+\delta) t}} d t=\frac{\mu^{\prime}}{\mu+\delta}\left(1-e^{-(\mu+\delta) n}\right)
$$

$n \rightarrow \infty$ white life $\bar{A}_{x}=\frac{\mu}{\mu+\delta}$

$$
\longrightarrow \lim _{n \rightarrow \infty} \bar{A}_{x: n}^{\prime}
$$

n-year pure

$$
\begin{aligned}
& \rightarrow \lim _{n \rightarrow \infty} A_{x}^{1}: n \\
& A_{x: n}^{\prime}: n=v^{n} n_{x}=v^{n} e^{-\mu n}=e^{-(\mu+\delta) n}
\end{aligned}
$$

$$
\mu=.05, \delta=.03
$$

(a) APV of a whde life of 1 , payall at the moment of decth
(b) \int Variance of this pilicy

$$
\begin{aligned}
\bar{A}_{x} & =\frac{\mu}{\mu+\delta}=\frac{.05}{.05+.03}=5 / 8=.625 \\
\operatorname{Var}(z) & =\underbrace{{ }^{2} \bar{A}_{x}}-\left(\bar{A}_{x}\right)^{2} \\
& =\frac{\mu}{\mu+2 \delta}-(.625)^{2} \\
& =\frac{.05}{\frac{05+.06}{\frac{5}{11}}-(.625)^{2}}=. .4545455
\end{aligned}
$$

n-year deferrel insunance

$$
\begin{aligned}
& Z=\left\{\begin{array}{cc}
0, & T \leq n, \\
v^{\top}, & T>n
\end{array}\right. \\
& =V^{\top} I(T>n) \\
& \left\{\begin{array}{l}
E[Z]={ }_{n} \bar{A}_{x} \\
d \bar{A}^{\prime \prime r}-x \\
E\left[Z^{2}\right]=\left.{ }_{n}^{2}\right|^{\prime} \bar{A}_{x} \\
\int_{n}^{\infty} v^{t} \cdot t p_{x} \mu_{x+t} d t
\end{array}\right.
\end{aligned}
$$

Exponentid l.fetionc,

$$
\begin{aligned}
n \mid \bar{A}_{x} & =\int_{n}^{\infty} \underline{v}^{t} \cdot \mu \cdot e^{-\mu t} d t \\
& =\mu \int_{n}^{\infty} \frac{e^{-(\mu+\delta) t}}{e^{-(\mu+\delta) n}} d t \\
& =\frac{\mu}{\mu+\delta} e^{-(\mu)}
\end{aligned}
$$

Fixed term life insurance

- An n-year term life insurance provides payment if the insured dies within n years from issue.
- For a unit of benefit payment, we have

$$
b_{T}=\left\{\begin{array}{ll}
1, & T \leq n \\
0, & T>n
\end{array} \text { and } v_{T}=v^{T}\right.
$$

- The present value random variable is therefore

$$
Z=\left\{\begin{array}{ll}
v^{T}, & T \leq n \\
0, & T>n
\end{array}=v^{T} I(T \leq n)\right.
$$

where $I(\cdot)$ is called indicator function. $\mathrm{E}[Z]$ is called the APV of the insurance.

- Actuarial notation:

$$
\bar{A}_{x: \bar{n} \mid}^{1}=\mathrm{E}[Z]=\int_{0}^{n} v^{t} f_{x}(t) d t=\int_{0}^{n} v^{t}{ }_{t} p_{x} \mu_{x+t} d t .
$$

Rule of moments

- The j-th moment of the distribution of Z can be expressed as:

$$
\mathrm{E}\left[Z^{j}\right]=\int_{0}^{n} v^{t j}{ }_{t} p_{x} \mu_{x+t} d t=\int_{0}^{n} e^{-(j \delta) t}{ }_{t} p_{x} \mu_{x+t} d t
$$

- This is actually equal to the APV but evaluated at the force of interest $j \delta$.
- In general, we have the following rule of moment:

$$
\mathrm{E}\left[Z^{j}\right] @ \delta_{t}=\mathrm{E}[Z]_{@ j \delta_{t}} .
$$

- For example, the variance can be expressed as

$$
\operatorname{Var}[Z]={ }^{2} \bar{A}_{x: \bar{n}}^{1}-\left(\bar{A}_{x: \bar{n})}^{1}\right)^{2}
$$

Traditional insurances - continuous

	Benefit	PV r.v.	APV	Variance
Type	b_{T}	Z	$\mathrm{E}[Z]$	$\operatorname{Var}[Z]$
Term life	$I(T \leq n)$	$v^{T} \cdot I(T \leq n)$	$\bar{A}_{x: \bar{n}}^{1}$	${ }^{2} \bar{A}_{x: \bar{n}]}^{1}-\left(\bar{A}_{x: \bar{n})}^{1}\right)^{2}$

\checkmark| Whole | 1 | v^{T} | \bar{A}_{x} | ${ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}$ |
| :--- | :--- | :--- | :--- | :--- |

$\checkmark \begin{array}{llll}\text { Pure } \\ \text { endowment }\end{array} \quad I(T>n) \quad \underline{v^{n} \cdot I(T>n)} \quad A_{x: \frac{1}{n} \text { or }}^{n}{ }_{n} E_{x} \quad{ }^{2} A_{x: \bar{n}}-\left(A_{\left.x: \frac{1}{n}\right)}\right)^{2}$
\checkmark Endowment $1 \quad v^{\min (T, n)} \quad \bar{A}_{x: \bar{n}} \quad{ }^{2} \bar{A}_{x: \bar{n} \mid}-\left(\bar{A}_{x: \bar{n})}\right)^{2}$
\checkmark Deferred $\quad I(T>n) \quad v^{T} \cdot I(T>n) \quad{ }_{n \mid} \bar{A}_{x} \quad{ }_{n}^{2} \bar{A}_{x}-\left({ }_{n \mid} \bar{A}_{x}\right)^{2}$
endowment

$$
\text { Bencfit }=1
$$

$$
\begin{aligned}
& \begin{aligned}
Z & =\underbrace{}_{\begin{array}{cc}
v^{\top}, & T \leq n \\
v^{n}, & T>n
\end{array}} \begin{aligned}
\min (T, n) & \text { simplifins }
\end{aligned}
\end{aligned} \\
& =v^{v^{\top} I\left(T^{\prime} \leq n\right)+v^{n} I\left(T^{\prime}>n\right)} \text {, defines } \\
& E\left[v^{\min (T, n)}\right]=\bar{A}_{x: n},
\end{aligned}
$$

$$
Z=b_{T} v_{T}
$$

$$
\begin{aligned}
b_{T}=1 \Rightarrow & E[z]=E\left[V_{T}\right] \\
b_{T}=B \Rightarrow & E[z]=B \cdot \underbrace{E\left[V_{T}\right]} \\
& \operatorname{Var}(z)=B^{2} \operatorname{Var}\left(Z e^{\beta_{1}}\right)
\end{aligned}
$$

constart frice $=.05$
consth $\delta=.03$

$$
\begin{align*}
\bar{A}_{x} & =\frac{5}{8} \\
100 \bar{A}_{x} & =100 \times \frac{5}{8} \tag{100}
\end{align*}
$$

$$
\begin{aligned}
& \text { endoumat }=\text { pure }+ \text { term } \Rightarrow\left\{\begin{array}{l}
\bar{A}_{x: n}=A_{x: \mid n}+\bar{A}_{\dot{x}: n} \\
\text { whale life }=\text { term }+ \text { deferel } \Rightarrow \bar{A}_{x}
\end{array}\right] \begin{array}{l}
\bar{A}_{x: n \mid}+n \mid \bar{A}_{x}
\end{array}
\end{aligned}
$$

deferred insane
= discounter whore life

$$
=n \mid \bar{A}_{x}={ }_{n} E_{x} \cdot \bar{A}_{x+n}
$$

cost force μ, δ

$$
\begin{aligned}
& \text { cons force } \mu, \delta \\
& n \left\lvert\, \bar{A}_{x}=\underbrace{\frac{\mu}{\mu+\delta}}_{\bar{A}_{x+n}} \cdot \underbrace{\operatorname{dichin}_{-(\mu+\delta) n}^{l}}_{\text {divas }}\right.
\end{aligned}
$$

Pure endowment insurance

- For an n-year pure endowment insurance, we can also express the PV random variable as:

$$
Z=v^{n} I\left(T_{x}>n\right),
$$

where $I(E)$ is 1 if the event E is true, and 0 otherwise.

- The term $I\left(I\left(T_{x}>n\right)\right)$ is a binary random variable with mean $\mathrm{E}\left[I\left(T_{x}>n\right)\right]={ }_{n} p_{x}$ and $\operatorname{Var}\left[I\left(T_{x}>n\right)\right]={ }_{n} p_{x}\left(1-{ }_{n} p_{x}\right)$.
- APV for pure endowment:

$$
A_{x:} \frac{1}{n \mid}={ }_{n} E_{x}=v^{n}{ }_{n} p_{x} .
$$

- Variance (show also using rule of moments):

$$
\operatorname{Var}[Z]=v^{2 n}{ }_{n} p_{x} \cdot{ }_{n} q_{x}={ }^{2} A_{x: \frac{1}{n}}-\left(A_{x: \frac{1}{n}}\right)^{2} .
$$

Endowment insurance

- An n-year endowment insurance is the sum of an n-year term and and n-year pure endowment:
where $Z_{1}=v^{T} \cdot I(T \leq n)$ is the term component and $Z_{2}=v^{n} I\left(T_{x}>n\right)$ is the pure endowment component.
- Therefore, it is clear that:
where $n E_{x}=v_{n}^{n} P_{x}$

$$
\bar{A}_{x: \bar{n}}=\bar{A}_{x: \bar{n} 1}^{1}+{ }_{n} E_{x}=
$$

- One can also use the variance of sums of random variables to get:

$$
\operatorname{Var}[Z]=\operatorname{Var}\left[Z_{1}\right]+\operatorname{Var}\left[Z_{2}\right]+2 \operatorname{Cov}\left[Z_{1}, Z_{2}\right]
$$

where one can show that $\operatorname{Cov}\left[Z_{1}, Z_{2}\right]=\mathrm{E}\left[Z_{1}\right] \mathrm{E}\left[Z_{2}\right]$ since $Z_{1} \cdot Z_{2}=0$.

$$
\begin{aligned}
& Z=\underset{\substack{L \\
v^{\top} I(T \leq n)}}{Z_{1}+Z_{2}} \longrightarrow v^{n} I(T>n) \\
& \text { P.S. can alway, use the } \\
& \text { ral of momat' }
\end{aligned}
$$

$$
\begin{aligned}
& Z_{1} \cdot Z_{2}=v_{v^{T} I(T \leqslant n)}^{1} \times v^{n} \frac{I(T>n)}{0} 1 \quad 0 \Rightarrow E\left[Z_{1} Z_{2}\right]=0 \\
& E\left[z_{1}\right] E\left[Z_{2}\right]=\bar{A}_{\substack{x: n \\
v}} \cdot A_{x: \bar{n}}
\end{aligned}
$$

Deferred insurance

- An n-year deferred insurance can be viewed as a discounted (with life) whole life insurance:

$$
{ }_{n \mid} \bar{A}_{x}={ }_{n} E_{x} \cdot \bar{A}_{x+n}
$$

- The pure endowment insurance is used as a discounting with life contingent payments.

Constant force of mortality - all throughout life

Assume mortality is based on a constant force, say μ, and interest is also based on a constant force of interest, say δ.

- Find expressions for the APV for the following types of insurances:
- whole life insurance;
- n-year term life insurance;
- n-year endowment insurance; and
- n-year deferred life insurance.
- Check out the (corresponding) variances for each of these types of insurance.
[Details in class]
while $=$ term + defame
APVs under constant force of mortality deferral $=$ whde-tern

Assume constant force of mortality μ and constant force of interest δ.

De Moivre's law

$$
\begin{aligned}
& \text { uniform } \quad(0, \omega) \\
& \text { limitioge } \\
& T_{x} \sim(0, \omega-x) \quad f_{T}(t)=\frac{1}{\omega-x}, 0 \leqslant t \leqslant \leqslant_{x}
\end{aligned}
$$

Find expressions for the APV for the same types of insurances in the case where you have:

$$
n \text {-year term }
$$

- De Moire's law.
while life
pure endow med
ny endowment
myers difenal
de Moivrés
term insmance: $\bar{A}_{x: n}^{\prime}=\int_{0}^{n} v_{\frac{1}{\omega} v^{t} f_{r}(t)}^{\omega-x} d t=\frac{1}{\omega-x} \underbrace{\int_{0}^{n} v^{t} d t}_{\text {Continuors }}=\frac{\bar{a}_{n}}{\omega-x}$,

$$
n \rightarrow \infty \Rightarrow n \rightarrow \omega-x
$$

Contrinuors, antain
annury, \bar{a}_{n}
whole life.

$$
\bar{A}_{x}=\frac{\bar{a}_{\omega-x}}{\omega-x}
$$

pure endoument
endowmat
(term + pue)
deferrel m-Year

$$
\begin{aligned}
& H_{x} \overline{w-x}^{A_{x}: n^{\prime} \mid}=\underline{v}^{n} \underbrace{-\delta n} P_{x}\left(1-\frac{n}{w-x}\right) \\
& \bar{A}_{x: n \overline{\mid}}=\frac{\bar{a}_{n}}{w-x}+e^{-\delta n}\left(1-\frac{n}{w-x}\right)
\end{aligned}
$$

Illustrative example 1

For a whole life insurance of $\$ 1,000$ on (x) with benefits payable at the moment of death, you are given:

$$
\delta_{t}= \begin{cases}0.04, & 0<t \leq 10 \\ 0.05, & t>10\end{cases}
$$

and

$$
\mu_{x+t}= \begin{cases}0.006, & 0<t \leq 10 \\ 0.007, & t>10\end{cases}
$$

Calculate the actuarial present value for this insurance.
while lob
1000 multipls by 1000

$$
80.02166
$$

$$
\begin{aligned}
& \text { Tooo natik by iov } \\
& =\text { term }+ \text { deferral } \\
& =\text { term }+\underbrace{\text { discouts whin } i t ?} \\
& =\frac{\mu}{\mu+\delta}\left[1-e^{-(\mu+\delta) n}\right]+e^{-(n+\delta) n} \frac{\mu^{\prime}}{\mu^{\prime}+\delta^{\prime}} \quad \delta^{\prime}=.05 \mu^{\prime}=.007 \\
& \delta=.04 \quad n=10 \\
& \begin{array}{l}
\mu=\left[\frac{.04}{.046}\left(1-e^{-.046(10)}\right)+e^{-.046(10)} \cdot \frac{.05}{.057}\right] \times 1000
\end{array}
\end{aligned}
$$

Suppose Benefit $=1000$
whole life

$$
\mu_{x+t}=\left\{\begin{array}{ll}
.003, & 0<t \leq 15 \\
.005, & t>15
\end{array} \quad \delta_{t}= \begin{cases}.04, & 0<t \leq 25 \\
.06, & t>25\end{cases}\right.
$$

Calculate APV of this whole life.

$$
\begin{aligned}
& -1000 \\
& \mu
\end{aligned}
$$

$$
\begin{aligned}
& 80.02166=\underbrace{\left.e_{e}^{-043(51)-.045(16)} e^{2} \cdot \frac{.005}{.005+.06}\right]}_{\text {thereck }}
\end{aligned}
$$

$$
{ }_{n+m} E_{x}=\underbrace{n E_{x}{ }_{m} E_{x+n}}
$$

 p is multiplichion

$$
\begin{aligned}
& v^{n+m} n+m p_{x}=v^{n} \cdot v^{m} \cdot n p_{x} \cdot m p_{x+n} \\
& =\underbrace{\left(v^{n} n P_{x}\right)} \cdot \underbrace{\left(v^{m} m P_{x+n}\right)} \quad \underbrace{50 E_{x}={ }_{10} E_{x} \dot{20} E_{x+10}}
\end{aligned}
$$

Benefits ar varying
while like $t(x)$ payable at the moment of lath where the benefits vary according to $\quad b_{T}=\left\{\begin{array}{ll}1, & T \leqslant 10 \\ 2, & 10<T \leqslant 20 \\ 5, & T>20\end{array}\right.$ ADV

$$
\begin{aligned}
A P V=1 . & \bar{A}_{x}
\end{aligned}+1 \cdot 10 E_{x} \bar{A}_{x+10}, \bar{A}_{x+20}
$$

$$
\begin{aligned}
b_{T} & =\left\{\begin{array}{ccc}
10, & 0<T \leqslant 20 \\
5, & 20<T \leqslant 40 \\
1, & T>40
\end{array}\right. \\
A P V & =\underbrace{\bar{A}_{x}+4 \cdot \bar{A}_{x}^{\prime}: 401}_{\text {assuming torm insmane ane avalith }}+5 \cdot \bar{A}_{x}^{\prime}: 20 \\
& =10 \cdot \bar{A}_{x}-5{ }_{20} E_{x} \bar{A}_{x+20}-4{ }_{40} E_{x} \bar{A}_{x+40}
\end{aligned}
$$

Consider whok efe $B=1 \quad$ PVrv $=Z=V^{\top}$
What is the promasints that the $P V$ is below some finel mander?

$$
\operatorname{Pr}(z \leqslant \alpha)=\operatorname{Pr}\left(v^{\top} \leqslant \alpha\right)
$$

$$
\begin{aligned}
& \underbrace{\text { ind nuabler? }}_{\alpha} \\
& \log ^{v^{T}}=T \cdot \underbrace{\log v}_{\log v}=\underbrace{\ln v}_{-\delta}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}[Z \text { sometharg smali }] \approx \operatorname{Pr}[T \text { is latr }] \\
& \operatorname{Pr}[Z \text { somithang lang }] \simeq \operatorname{Pr}[T \text { is caricier }]
\end{aligned}
$$

1

$$
\alpha \leqslant 1
$$

$$
\begin{aligned}
& \alpha \leqslant 1 \\
& \log \alpha \Rightarrow \text { meg chn } \\
& \delta \Rightarrow \text { regatm }
\end{aligned}
$$

$$
-\delta \Rightarrow \text { nosam }
$$

Equivalent probability calculations

We can also compute probabilities of Z as follows. Consider the present value random variable Z for a whole life issued to age x. For $0<\alpha<1$, the following is straightforward:
where

$$
\begin{aligned}
\underbrace{\operatorname{Pr}[Z \leq \alpha]} & =\operatorname{Pr}\left[e^{-\delta T_{x}} \leq \alpha=\operatorname{Pr}\left[-\delta T_{x} \leq \log (\alpha)\right]\right. \\
& =\operatorname{Pr}\left[T_{x}>-(1 / \delta) \log (\alpha)\right]={ }_{u} p_{x},
\end{aligned}
$$

$$
\underline{u}=(1 / \delta) \log (1 / \alpha)=\underline{\log (1 / \alpha)^{1 / \delta}}
$$

- Consider the case where $\alpha=0.75$ and $\delta=0.05$. Then $u=\log (1 / 0.75)^{1 / 0.05}=5.753641$.

$$
\begin{gathered}
\operatorname{Pr}[Z \leqslant .90] \Rightarrow \\
>6 \text { years }
\end{gathered}
$$

- Thus, the probability $\operatorname{Pr}[Z \leq 0.75]$ is equivalent to the probability that (x) will survive for another 5.753641 years.

Insurances with varying benefits

$\left.\begin{array}{llll}\hline \hline \text { Type } & b_{T} & Z & \text { APV } \\ \hline \boldsymbol{l} \begin{array}{l}\text { Increasing } \\ \text { whole life }\end{array} & \lfloor T+1\rfloor & \lfloor T+1\rfloor v^{T} & (I \bar{A})_{x} \\ \begin{array}{l}\text { Whole life } \\ \text { increasing m-thly }\end{array} & \lfloor T m+1\rfloor / m & v^{T}\lfloor T m+1\rfloor / m & \left(I^{(m)} \bar{A}\right)_{x} \\ \begin{array}{l}\text { Constant increasing } \\ \text { whole life }\end{array} & T & T v^{T} & (\bar{I} \bar{A})_{x}\end{array}\right\}$

* These items will be discussed in class.

incerasty whel life

$$
1,2,3
$$

$$
Z=\lfloor T+1\rfloor V^{T}
$$

$L \cdot J=$ gralest intager $^{\text {res. }}$

$$
T=0.5
$$

$$
A P V=\int_{0}^{\infty}[t+1] v^{t} \underbrace{f_{r}(t)}_{\rightarrow 0} d t=(I \bar{A})_{x}
$$

$$
\lfloor T+1\rfloor=1
$$

$$
n, n-1, n-2
$$

n-year decreasing term

$$
Z=\left\{\begin{array}{cl}
n-L T\rangle, & 0 \leqslant T \leqslant n \\
0 . & T>n
\end{array}\right.
$$

$$
A P V=(D, \bar{A}) \dot{x}: n
$$

$(\underbrace{(\bar{A}) \dot{X}: \bar{n} \mid} \Rightarrow$ deceasing by 1 ant

5000 deceasing by 100 each year and stops at the ene of 2 s -year

$$
\begin{aligned}
\operatorname{APV}(\text { benefits })= & (D \bar{A})_{x}^{\prime}: 201 \cdot 100 \\
& +3000 \cdot \bar{A}_{x}: 20
\end{aligned}
$$

Illustrative example 2 skip,

For a whole life insurance on (50) with death benefits payable at the moment of death, you are given:

- Mortality follows De Moivre's law with $\omega=110$.
- $b_{t}=10000(1.10)^{t}$, for $t \geq 0$
- $\delta=5 \%$
- Z denotes the present value random variable for this insurance.

Calculate $\mathrm{E}[Z]$ and $\operatorname{Var}[Z]$.
Can you find an explicit expression for the distribution function of Z, i.e. $\operatorname{Pr}[Z \leq z]$?

The APV of n-year term insmane, payebl at the EOY of deoth, is

$$
\int_{\substack{\text { nobar } \\ \Rightarrow \rightarrow \text { disat }}}=\sum_{k=0}^{n-1} v^{k+1} \underbrace{\frac{d x+k}{l x}}_{\frac{k \mid q_{x}}{}}=\sum_{k=0}^{n-1} v_{1}^{k+1} \frac{d_{x+t}}{l_{x}}
$$

$$
Z=P V
$$

$$
\begin{array}{ll}
\operatorname{Var}(z) & =\underbrace{{ }^{2} A_{x: n}}_{\begin{array}{l}
\text { evelactuc } C 2 \delta \\
\text { rule of } \\
\text { mimat, }
\end{array}}-\left(A_{x}: n\right)^{2 \delta})^{2}
\end{array} \quad \begin{aligned}
& i \rightarrow \delta
\end{aligned}
$$

$n \rightarrow \infty$ (discretc) while life insurance

$$
\begin{aligned}
& \begin{array}{l}
Z=v^{k+1} \text {, norstretin } K \\
E\left[v^{k+1}\right]=A_{x} \xrightarrow{\infty} \sum_{k=0}^{v^{k+1}}{ }_{k \mid} q_{x}=\sum_{k=0}^{\infty} v^{k+1} \frac{d x+k}{l_{x}}
\end{array} \\
& \operatorname{Var}(z)={ }^{2} A_{x}-\left(A_{x}\right)^{2} \\
& { }^{2} A_{x}=\sum_{k=0}^{\infty} e^{-2 \delta(k+1)} \frac{d x+k}{l x}
\end{aligned}
$$

mortality assumptim
SULT

- Makcham (detabs in book) Stonkari Ultimade LF Tabl

$$
-i=.05
$$

e.g. APV of < whed lib of 1 rssues to
(i) 50 years old

$$
\begin{aligned}
& A_{50}=0.18931 \\
& A_{65}=0.35477
\end{aligned}
$$

(ii) 65 yeass old

$$
\begin{aligned}
& \text { (ii) }{ }^{65 \text { y cass old }} \\
& \operatorname{Var}(z)={ }^{2} A_{50}-\left(A_{50}\right)^{2}=.05108-(.18931)^{2}>0
\end{aligned}
$$

$5 y$ cas ${ }_{5} E_{x}$, 10yus " "Ex' bo you $2 \cdot E_{x}^{\prime}$

Insurances payable at EOY of death

- For insurances payable at the end of the year (EOY) of death, the PV r.v. Z clearly depends on the curtate future lifetime K_{x}.
- It is $Z=b_{K+1} v_{K+1}$.
- To illustrate, consider an n-year term insurance which pays benefit at the end of year of death:

$$
b_{K+1}=\left\{\begin{array}{ll}
1, & K=0,1, \ldots, n-1 \\
0, & \text { otherwise }
\end{array}, v_{K+1}=v^{K+1}\right.
$$

and therefore

$$
Z= \begin{cases}v^{K+1}, & K=0,1, \ldots, n-1 \\ 0, & \text { otherwise }\end{cases}
$$

$$
Z=b_{T} \cdot v_{T^{\prime}}
$$

$$
Z=b_{k+1} \cdot V_{k+1}^{\prime}
$$

$$
v=\frac{1}{1+c} \quad v_{k+1}=v^{k+1}
$$

$$
i=\text { constat }
$$

Continuous (at the moment of decth)
discrite
(at the cret of the year of dooth)

n-year term insuance payalh at eoy of death

$$
\begin{aligned}
& K_{x}=\text { curtich fution } \\
& \text { lifution of (} x \text {) } \\
& \underset{\substack{\text { on EPV } \\
\text { APV (bencfits) }}}{ }=E[Z]=\sum_{k=0}^{\infty} v^{k+1} \underbrace{I}_{\substack{I(k<n) \text {, if true } \\
=0}} \operatorname{Pr}(K=k)=\underbrace{\sum_{k=0}^{n-1} v^{k+1}} \operatorname{Pr}[K=k]
\end{aligned}
$$

3-yeartern

$$
A_{x: n}^{\prime}=\sum_{k=0}^{n-1} v^{k+1} \frac{d x+k}{l x}
$$

3-yearterm
$\Rightarrow B=1 \quad i=5 \% \quad$ let you calaret

$$
\begin{aligned}
& \operatorname{APV}(n-y r+t-m)=\sum_{k=0}^{n-1} v^{k+1} \underbrace{P r[k=k]}_{\text {defermes probabib }} \frac{1}{k^{-} w_{k+1}} \\
& k \left\lvert\, q_{x}=k p_{x} q_{x+k} \quad k p_{x}=\frac{l_{x+k}}{l_{x}}\right. \\
& =\sum_{k=0}^{n-1} v^{k+1} \frac{l_{x+k}}{l_{x}} \cdot \frac{d_{x+k}}{l_{y}+k} \\
& q_{x+k}=\frac{d_{x+k}}{d_{x+k}}
\end{aligned}
$$

$$
\begin{aligned}
& v^{2}=e^{-1} \\
& v^{*}=e^{-2 \delta}=v^{2} \quad \text { Back to om example: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Back to ow example: } \\
& { }^{2} A_{35: 37}^{\prime}=v^{2} \frac{5}{1000}+v^{4} \frac{10}{1000}+v^{6} \frac{20}{1000}
\end{aligned}
$$

Check: $\operatorname{Var}[2] \geqslant 0$, non-negativer
\longrightarrow whole life $Z=v^{k+1}, k=0,1, \ldots, \infty,{ }_{n} \longrightarrow 1$ if tall $\frac{d x+k}{d x}$

$$
\begin{aligned}
Z & =v^{k+1}, k=0,1, \\
E[z] & =A_{x}=\sum_{k=0}^{\infty} v^{k+1} \operatorname{Pr}[k=k] \\
\operatorname{Var}[z] & ={ }^{2} A_{x}-\left(A_{x}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}[Z]=E[Z \otimes 2 \delta]-(E[Z])^{2} \\
& A_{x: n T}^{\prime}=\sum_{k=0}^{n-1} v^{k+1} \frac{d_{x+k}}{l x} \\
& =\underbrace{{ }^{2} A_{x: n}}_{2 \delta}-\left(A_{x: n}^{\prime}\right)^{2} \\
& { }^{2} A_{x: n]}^{\prime}=\sum_{k=0}^{n-1} v^{2(k+1)} \frac{d x+k}{l x} \\
& \delta \rightarrow 2 \delta \\
& v=e^{-\gamma}
\end{aligned}
$$

$n-y$ rer
$\underbrace{\text { endowment inswance }} \quad Z=\underbrace{v^{k+1} I(k<n)}+\underbrace{v^{n} I(k \geqslant n)}$

$$
\begin{aligned}
\text { term insumance }+\underset{\text { pure }}{\text { endoument }}
\end{aligned}=v^{\min (k+1, n)} n E_{x}
$$

$$
\begin{aligned}
& E[z]=A_{x: n}=A_{x}: n \mid \\
& \operatorname{Var}[z]={ }^{2} A_{x: n}=\left(A_{x: n}\right)^{2}
\end{aligned}
$$

using 2δ ruk
deferred insunance

$$
\begin{aligned}
\text { eferred insurance } & =v^{k+1} I(k \geqslant n) \\
E[2] & ={ }_{n \mid} A_{x}={ }_{n} E_{x} A_{x+n} \\
\operatorname{Var}[z] & ={ }_{n}^{2} A_{x}-\left(n \mid A_{x}\right)^{2} \\
n \mid A_{x} & =\sum_{\substack{k=n}}^{\infty} v^{k+1}{ }_{k \mid} A_{x}
\end{aligned}
$$

$$
\begin{aligned}
& n \mid A_{x}=\sum_{k=n}^{\infty} v^{k+1} k P_{x} q_{x+k} \quad k^{*}=k-n \Leftrightarrow k=k^{*}+n \\
& =\sum_{k^{x}=0}^{\infty} v^{v^{k^{x}+1} \cdot \underbrace{v^{n} n p_{x}}_{n E_{x}}} \cdot k^{k} p_{x+n} \underbrace{k^{x}+n p_{x}}_{\substack{ \\
q+n+k^{k}+n}}{ }_{n p_{x} \cdot k^{x} p_{x+n}} \\
& =n E_{x} \frac{\sum_{k^{x}=0}^{\infty} v^{k^{*}+1} k^{x} p_{x+n} q_{x+n+k^{x}}}{A_{x+n}}
\end{aligned}
$$

deferred $=$ discounted while life (start late-)

$$
\begin{aligned}
& \text { deferred }=\text { term }+ \text { pure endowment } \\
& \text { endowment }=\text { term }+ \text { deferred } \\
& \text {, whole life }=\text { then }
\end{aligned}
$$

- continued

- APV of n-year term:

$$
A_{x: \bar{n} \mid}^{1}=\mathrm{E}[Z]=\sum_{k=0}^{n-1} v^{k+1}{ }_{k \mid} q_{x}=\sum_{k=0}^{n-1} v^{k+1}{ }_{k} p_{x} \cdot q_{x+k}
$$

- Rule of moments also apply in discrete situations. For example,

$$
\operatorname{Var}[Z]={ }^{2} A_{x: \bar{n} \mid}^{1}-\left(A_{x: \bar{n}}^{1}\right)^{2},
$$

where

$$
{ }^{2} A_{x: \bar{n} \mid}^{1}=\mathrm{E}\left[Z^{2}\right]=\sum_{k=0}^{n-1} e^{-2 \delta(k+1)}{ }_{k} p_{x} \cdot q_{x+k}
$$

Traditional insurances discrete

Type	Benefit 4. b_{k+1}	$\begin{aligned} & \text { PV r.v. } \\ & Z=b_{k+1} v_{k+1} \end{aligned}$	$\begin{aligned} & \hline \mathrm{APV} \\ & \mathrm{E}[Z] \end{aligned}$	Variance $\operatorname{Var}[Z]$
Term life	$I(K<n)$	$v^{K+1} \cdot I(K<n)$	$A_{x: \bar{n}}^{1}$	${ }^{2} A_{x: \bar{\square}}^{1}-\left(A_{x: \bar{n}}^{1}\right)^{2}$
Whole life	1	v^{K+1}	A_{x}	${ }^{2} A_{x}-\left(A_{x}\right)^{2}$
Endowment	1	$v^{\min (K+1, n)}$	$A_{x: \bar{n}}$	${ }^{2} A_{x: \bar{n} \mid}-\left(A_{x: \bar{n}}\right)^{2}$
Deferred	$I(K \geq n)$	$v^{K+1} \cdot I(K \geq n)$	${ }_{n \mid} A_{x}$	${ }_{n \mid}^{2} A_{x}-\left({ }_{n \mid} A_{x}\right)^{2}$

$$
P_{x} q_{x} A_{x}
$$

SULT a $i=5 \%$
Makeham' $\mu_{x}=A+B C^{x}$ relistic,

$$
\begin{aligned}
& A=.00022 \\
& B=2.7 \times 10^{-6} \\
& C=1.124
\end{aligned}
$$

e.g. 10 year term insurance

$$
\begin{aligned}
& A_{x: 101}^{\prime}=A_{x: 100}^{\prime}-{ }_{10} E_{x}^{\prime} \\
& x=40 \\
& A_{40: 107}^{\prime}=\underbrace{A_{40: 100}}_{.61494}-\underbrace{10 E_{40}}_{.60920}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { per dollar } \\
& \text { of benefit }
\end{aligned}
$$

$100 \times A_{4}^{\prime} 0: 101$
If benefit is say 100 ,
What if you need a term other than 10 or 20 years?

SULT, Mortality fillows the Standare Ultmot, Lif Table

$$
i=5 \%
$$

Calcalate the APV of a 30-year term insunana of 1 issual to

$$
A_{x: 301}^{\prime}=A_{x: 307}^{\prime}-30 E_{x}^{\prime}
$$

$$
{ }_{30} E_{40}=20 E_{40} \times 10 E_{60}
$$

$\operatorname{term} \underbrace{A_{40}^{\prime}: 301}_{12106}=A_{40}-\underbrace{{ }_{30} E_{40}}_{\underbrace{301} A_{40}} A_{70} A .42818$

$$
13663
$$

$$
=0.03022299
$$

endoumant

$$
A_{40: 307}=\frac{A_{40}^{\prime}: 36+30 E_{40}}{}=0.2423698
$$

Mortaily fillows suct $C i=5 \%$
$Z=P V$ of a whole like of 100 payabl at eoy of deth issuct to (40)

Calculate Var $[z]$.

$$
\begin{aligned}
& E[z]=\underbrace{100 \cdot A_{40}}_{\cdot 12106}=\underbrace{12.106} \\
& E\left[z^{2}\right]=100^{2} \cdot{ }^{2} A_{40}=\frac{100^{2} \cdot(.02347)}{\operatorname{Var}[z]=100^{2}\left[\cdot 02347-(.12106)^{2}\right]-88.14976}
\end{aligned}
$$

Calcalate: 20 -year term insuarne of 100 to $(40)=100 * A_{40}^{\prime}, 200=1.463964-$ practice

Mortality follows sult e 5%
$Z=P V$ r.u. of a 25 -year deferred of 100 to (40) (payable at coy of death)

Calculate $E[Z]$ and $\operatorname{Var}[Z]$

$$
{ }^{2} A_{G S}=.15420
$$

$$
E\left[2^{2}\right]=\text { same frame }<2 \delta
$$

$$
\begin{aligned}
& E[Z]=100 * 251 A_{40} \\
& =100 \times{ }_{25} E_{40} \times A_{65} \\
& =\underbrace{100 \times{ }_{200} E_{40}^{\prime} \times \underbrace{{ }_{50} E_{60}^{\prime}}_{.3663} \times \underbrace{\prime}_{.7667} \underbrace{\prime}_{.35477}} \\
& \text { 9. } 974626
\end{aligned}
$$

$$
\operatorname{Var}[z]=* *-(9.974626)^{2}=* * \text { practixe }
$$

$$
\begin{aligned}
& { }_{n} E_{x}=v^{n} n P_{x} \\
& { }_{n} E_{x} \propto 2 \delta=v^{2 n} n P_{x}=\underbrace{v^{n} \cdot n E_{x}} \\
& V^{n} \cdot \underbrace{V^{n} P_{x}}_{n E_{x}} \\
& E\left[z^{2}\right]=100^{2} \times 25 E_{40} \text { © } 2 \delta \times{ }^{2} A_{65} \\
& V=\frac{1}{1.05} \\
& =100^{2} * v^{25} \cdot{ }_{25} E_{40} *{ }^{2} A_{65} \rightarrow 15420 \\
& \left(\frac{1}{1.05}\right)^{25}{ }_{20}{ }_{26663} \times{ }_{26} E_{60} .76687
\end{aligned}
$$

varying payments end of year of death t (45)

Calculate APV!

500 in the first 10 years 300 in the fillowing 10 years 100 thereafter
sums of what e life,

$=500(.15161)-200(.60655)(.23524)$

$$
\frac{-200(.35994)(.35477)}{21.72885}
$$

in terms of

$$
\left(\bar{A}_{45120}-20 E_{45}\right)
$$

17-year deferred to (42) of 1000

$$
A P V(\text { benefit })=? ?
$$

Sult
c 5%

$$
1000 \times 171 A_{42}=1000 \times \underbrace{17 E_{42}} A_{59} \longrightarrow .27852
$$

Method 1: ${ }_{17} E_{42}=\underbrace{v^{17}{ }_{17} P_{42}}=(\underbrace{\frac{1}{1.05}})^{17} \frac{l_{59}}{l_{42}}-\frac{96929.6}{99229.8}$

Recursive formula, one year the next -

$$
\begin{aligned}
A_{x} & =A_{x: \pi}^{\prime}+\underbrace{E_{x}} \cdot \underbrace{A_{x+1}}_{x+1} \\
& =\underbrace{v \cdot q_{x}}+v \cdot p_{x} \underbrace{A_{x+1}}_{x+1} \\
A_{x} & =v q_{x}+v p_{x} A_{x+1} \\
A_{x+1} & =\frac{A_{x}-v q_{x}}{v p_{x}}
\end{aligned}
$$

$\checkmark F^{\prime} \quad$ intuturic

commonly wal'

$$
\begin{aligned}
& A_{x}=1 \cdot v q_{x}+v p_{x} A_{x+1} \quad v \text { LF } \\
& \underset{\substack{\text { mond } \\
\text { med }}}{2} A_{x}=v^{2} \cdot q_{x}+v^{2} p_{x}^{2} A_{x+1}
\end{aligned}
$$

whok lifs

$$
\begin{aligned}
& A_{x}=\underbrace{\sum_{k=0}^{\infty} v^{k+1} \cdot \underbrace{k \mid q_{x}}_{k p_{k} q_{x+k}}} \\
& =v q_{x}+\underbrace{\sum_{k=1}^{\infty} v^{k+1}{ }_{k} p_{x} q_{x+k}}_{k^{*}=k-1 \rightarrow k=k^{k}+1} \\
& \underbrace{\sum_{k^{*}=0}^{\infty} v^{k^{*}+1+1} \underbrace{k^{x}+1 p_{x}}_{\underbrace{}_{x} \cdot k^{*} P_{x+1}} q_{x+1+k^{x}} q_{x+1+k^{*}} .} \\
& \begin{array}{l}
=v q_{x}+v p_{x} \frac{\sum_{k^{x}=0}^{\infty} v^{k^{x}+1} k^{x} p_{x+1} q_{x+1+k^{x}}}{A_{x+1}}
\end{array} \\
& A_{x}=v g_{x}+v p_{x} A_{x+1}
\end{aligned}
$$

term itsuanu

$$
\begin{aligned}
& A_{x: n}^{\prime}=v q_{x}+v p_{x} A_{x+1: \frac{x}{n-1}} \\
& \text { endownt } \\
& A_{x}: n=v g_{x}+v p_{x} A_{x+1: \overline{n-1}} \\
& \underbrace{n E_{x}}=\underbrace{E_{x} \cdot n-1 E_{x+1}} \\
& A_{x}=A_{x: 1}^{1}+E_{x} A_{x+1} \\
& \bar{A}_{x}=\underbrace{\bar{A}_{x: n}}_{1}+1 E_{x} \bar{A}_{x+1} \\
& \underbrace{\int_{0}^{1} v^{t} t \rho_{x} \mu_{x+t} d t}_{v s} \\
& v \cdot g_{x} /
\end{aligned}
$$

Recursive relationships

- The following will be derived/discussed in class:
- whole life insurance: $A_{x}=v q_{x}+v p_{x} A_{x+1}$
- term insurance: $A_{x: \bar{n} \mid}^{1}=v q_{x}+v p_{x} A_{x+1: \overline{n-1}}^{1}$
- endowment insurance: $A_{x: \bar{n}}=v q_{x}+v p_{x} A_{x+1: \overline{n-1}}$
develop recursion for a deferred

Figure: Actuarial Present Value of a discrete whole life insurance for various interest rate assumptions

Figure: Actuarial Present Value of a discrete whole life insurance for various mortality rate assumptions with interest rate fixed (t 5\%)

Illustrative example 3

$$
\operatorname{Var}[z]={ }^{2} A_{41}-\left(A_{41}\right)^{2}
$$

For a whole life insurance of (41) with death benefit payable at the end of the year of death, let \underline{Z} be the present value random variable for this insurance.
You are given:

- $i=0.05$;
recursion

$$
v=1 / 1.05
$$

$$
\begin{array}{cc}
\text { recursion } & p_{40}=.9912 \\
A_{41}-A_{40}=.00822 & q_{40}=.0028
\end{array}
$$

- $p_{40}=0.9972$;

$$
\begin{aligned}
& A_{41}-A_{40}=0.00 \\
& A_{41}-\left(v q_{40}+v p_{40} A_{41}\right)=.00822
\end{aligned}
$$

- $\overbrace{41-A_{40}}=0.00822 ;$ and $^{\prime} /$
- ${ }^{2} A_{41}-{ }^{2} A_{40}=0.00433$.

Calculate $\operatorname{Var}[Z]$.

$$
A_{41}=.21699621
$$

$$
\begin{aligned}
& { }^{2} A_{41}-{ }^{2} A_{40}=.00433 \\
& v^{2}=1 / 1.05^{2} \\
& \left(v^{2} q_{40}+v^{2} P_{40}{ }^{2} A_{40}\right)=.00433 \\
& { }^{2} A_{41}\left(1-v^{2} p_{40}\right)=\frac{.00433-v^{2} q_{40}}{1-v^{22} P_{40}} \\
& { }^{2} A_{41}=.0712616 . \\
& V_{\text {ar }}[z]={ }^{2} A_{41}-\left(A_{41}\right)^{2} \\
& =.0712616-(.21695621)^{2} \approx 0.025,
\end{aligned}
$$

Other forms of insurance

- Varying benefit insurances
- Very similar to the continuous cases
- You are expected to read and understand these other forms of insurances.
- It is also useful to understand the various (possible) recursion relations resulting from these various forms.

Illustration of varying benefits

For a special life insurance issued to (45), you are given:

- Death benefits are payable at the end of the year of death.
- The benefit amount is $\$ 100,000$ in the in the first 10 years of death, decreasing to \$50,000 after that until reaching age 65 .
- An endowment benefit of $\$ 100,000$ is paid if the insured reaches age 65.
- There are no benefits to be paid past the age of 65.
- Mortality follows the Standard Ultimate Life Table at $i=0.05$.

Calculate the actuarial present value (APV) for this insurance.

SULI wholelif inguane, 10 year out.went wor en ent

$$
A P V(\text { beneft })=100000 A_{45}^{\prime}: 20
$$

$$
-50000 \int_{.60615}^{10} E_{45}^{\prime} \frac{A_{55: 100}^{\prime}}{\left(A_{55: 100}-{ }_{10} E_{55}^{\prime}\right)^{4}}
$$

$$
\left(A_{55}^{\prime}-{ }_{10} E_{55} A_{65}\right)_{5} .35477
$$

$$
\begin{array}{cc}
1 \\
.23524 & 1 \\
\hline
\end{array}
$$

$$
=37,635.96
$$

$$
\begin{aligned}
& A P V(\text { benefit })=100000 A_{45} \\
& -50000{ }_{10 E_{45}} A_{55} \\
& \quad-50000{ }_{20} E_{45} A_{65} \\
& +100000 \quad{ }_{20} E_{45}
\end{aligned}
$$

verify the same result!

Illustrative example 4

For a whole life insurance issued to age (40) you are given:

- Death benefits are payable at the moment of death.
- The benefit amount is $\$ 1,000$ in the first year of death, increasing by $\$ 500$ each year thereafter for the next 3 years, and then becomes level at $\$ 5,000$ thereafter.
- Mortality follows the Standard Ultimate Life Table at $i=0.05$.
- Deaths are uniformly distributed over each year of age. UDD

Calculate the APV for this insurance.
(40)
moment of derth suरT C $i=5 \%$

$$
\begin{aligned}
& \operatorname{APV} \text { (benefs) }=1000 \bar{A}_{40}+500 \cdot E_{40} \bar{A}_{41}+500{ }_{2} E_{40} \bar{A}_{42} \\
& +500{ }_{3} E_{40} \bar{A}_{43}+\underline{2500} 4 E_{40} \bar{A}_{44} \\
& =500 \cdot \frac{i_{i}^{i}}{.05}[2 A_{40}+\underbrace{E_{40}^{\prime}} A_{41}+\underbrace{2 E_{40}} A_{42}+\underbrace{E_{40}^{\prime}} A_{43} \\
& \left.+5{ }_{4} \bar{E}_{40} A_{44}\right] \\
& A_{40}=.12106 \quad A_{42}=.13245 \quad A_{44}=.14496 \\
& A_{41}=.1266_{3} \quad A_{43}=.13859
\end{aligned}
$$

$$
\begin{aligned}
& { }_{1} E_{40}=v P_{40}^{\prime} \\
& { }_{2} E_{40}=v^{2} P_{40}^{\prime} \cdot P_{41}^{\prime}=v^{2} l_{42}^{\prime} / l_{40}{ }^{\prime} \\
& { }_{3} E_{40}=v^{3} P_{40} P_{41} P_{42}=v^{3} l_{43} / l_{40} \\
& { }_{4} E_{40}=v^{4} P_{40} P_{40} P_{42} P_{43}=v^{4} l_{44} / l_{40}
\end{aligned}
$$

$$
F_{41}=1-g_{4_{0}},
$$

$$
=14 i / 840^{\circ}
$$

verify $A P V($ benefits $)=613.4042$

Just consider lyear term insmance,

$$
\begin{aligned}
& A_{x: T}^{(m)}=v^{1 / m}{ }_{1 / m} q_{x}+v^{1 / m} x_{m} p_{x} v^{1 / m} q_{v+1 / m}^{0} \\
& +v^{2 / m} m_{m} p_{x} v^{2 / m} l_{1} q_{x+2} / m+\cdots \\
& =\sum_{r=0}^{m-1} v^{(r+1) / m} \overbrace{\frac{r}{m} \cdot q_{x}}^{\frac{r}{m} p_{x} \frac{1}{m} q_{x+\frac{r}{m}}} \\
& =q_{x} \cdot \frac{1}{m} \underbrace{v^{1 / 2}+v^{2 / n}+\ldots+v^{m / m}}_{\sum_{=0}^{m-1} v^{(r+1) / m}}
\end{aligned}
$$

monthy $m=12$ semamul $m=2$ quatiry $m=4$

UDD assurption

$$
\begin{aligned}
& =q_{x} \cdot \frac{1}{m} \cdot v^{1 / m} \frac{1-v^{m / m}}{1-v^{1 / m}} \\
& =q_{x}^{\prime} \\
& v^{\frac{i}{i m}}
\end{aligned}
$$

$$
\begin{aligned}
& -A_{\dot{x}: n=}^{(m)} \approx \underbrace{\frac{i}{i(m)}}_{\text {adjulnt: }} A_{x: \pi}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \cong \frac{i}{i^{(m)}}\left[\frac{A_{x}^{\prime}: \pi+\cdot E_{x} A_{x+1: \pi}^{\prime}+{ }_{2} E_{x} A_{x+2 \cdot T}^{\prime}+\cdots}{\left.A_{x}^{\prime}: n\right]}\right. \text { exact UDD } \\
& n \rightarrow \infty \\
& -A_{x}^{(m)}=\frac{i}{i^{(m)}} A_{x} \\
& \lim _{m \rightarrow \infty} i^{(n)} \rightarrow \delta \\
& m \rightarrow \infty \Rightarrow \text { continum } \\
& \overline{A_{x}}=\frac{i}{\delta} A_{x}
\end{aligned}
$$

apply $\frac{i}{i(m)}$ or $\frac{i}{\delta}$ anly n insamans but cot in
paneond wroent

$$
\begin{aligned}
& A_{\dot{x}: n]}^{(n)}=\frac{i}{i^{(n)}} A_{\dot{x}: n}^{n} \\
& A_{x: n}^{(n)}=\underbrace{A_{\dot{x}: n}^{(m)}}+A_{x} \cdot \dot{n} \\
& \frac{i}{i^{(n)}} A_{x: n}^{i}+A_{x}: n \\
& \bar{A}_{x: n}=\bar{A}_{x}^{1}: n \bar{n}+A_{x} \cdot \bar{n}^{\prime} \\
& =\frac{i}{\delta} A_{x, n}+A_{x \cdot n}
\end{aligned}
$$

condowment dm ant have a simia atyuntry

Insurances payable m-thly

- Consider the case where we have just one-year term and the benefit is payable at the end of the m-th of the year of death.
- We thus have

$$
\underset{x: 1}{A_{1}^{(m)}}=\sum_{r=0}^{m-1} v^{(r+1) / m} \cdot{ }_{r / m} p_{x} \cdot{ }_{1 / m} q_{x+r / m}
$$

- We can show that under the UDD assumption, this leads us to:
- In general, we can generalize this to:

$$
\underbrace{A_{1}^{(m)}=\frac{i}{x: 1}}_{x=1}+\frac{i(m)}{i^{(m)}}
$$

Other types of insurances with m-thly payments

- For other types, we can also similarly derive the following (with the UDD assumption):

- endowment insurance: $A_{x: \bar{n}}^{(m)}=\frac{i}{i^{(m)}} A_{x: \bar{n} \mid}^{1}+A_{x: \frac{1}{n \mid}}$

Relationships－continuous and discrete

$$
\frac{i}{i(m)} \rightarrow \frac{i}{\delta}
$$

－For some forms of insurances，we can get explicit relationships under the UDD assumption：
－whole life insurance： $\bar{A}_{x}=\frac{i}{\delta} A_{x}, \quad\left(I A^{(n)}\right)_{\dot{x}: ⿹ 𠃌 龴}$
－term insurance： $\bar{A}_{x: \bar{n} \mid}^{1}=\frac{i}{\delta} A_{x: \bar{n}}^{1}, \quad(\bar{I} \bar{A})_{\dot{x}, n}$

$A_{x} \bar{A}_{x} A_{x}^{(m)}$ compme.
$\stackrel{\downarrow}{\left(\frac{i}{\delta}\right)^{1}} A_{x} \quad \stackrel{i}{i} A_{x}^{i(n)} A_{x}$

$$
A_{x}^{(12)}>A_{x}^{(6)}>A_{x}^{(4)}
$$

Illustrative example 5

For a three-year term insurance or 1000 or (50] you are given:

- Death benefits are payable at the end of the quarter of death.
- Mortality follows a select and ultimate life table with a two-year select period:

$19 \quad 26$				
[x]	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	$x+2$
50	(9706)	9687	9661	3, 52
51	9680	9660	9630	53
52	9653	9629	9596	54

- Deaths are uniformly distributed over each vear of age.
- $i=5 \%$

Calculate the APV for this insurance.

3-year term of 1000 to [50]
end of quorkm

$$
m=4
$$

$$
\begin{aligned}
& 1000 A_{[50]: 3]}^{(4)}=1000 \frac{i}{i(4)} A_{[50]: 3]}^{1} \\
& =1000 \frac{i}{i^{(4)}},\left[v \cdot \frac{d[50]}{l_{[50]}}+v^{2} \frac{d[50]+1}{l[5]}+\frac{v^{3} \frac{d[5]+2}{[5]}}{l[5]}\right] \\
& i=.05 \\
& i^{(4)} \\
& \left(1+\frac{i^{(4)}}{4}\right)^{4}=1+i \\
& i^{(4)}=\underbrace{4\left[(1.05)^{1 / 4}-1\right]}=\underbrace{1000 \frac{i}{i(4)}\left[v \cdot \frac{19}{9706}+v^{2} \frac{26}{9706}+v^{3} \frac{31}{9706}\right]} \\
& v=\frac{1}{1.05} \\
& =7.183958 \\
& \text { selet- } \\
& \text { quarte. } \\
& \text { lile table. }
\end{aligned}
$$

$J=\begin{gathered}\text { the muster of priots } \\ \text { corrp }\end{gathered}$ in the year of dent
$\left[\begin{array}{l}J=\{\underbrace{0,1, \ldots, m-1}_{\text {APV of this insuare }}\}\end{array}\right.$ payabl m-thly
appraimation $A_{x}^{(n)}=\frac{i}{i(m)} A_{x}$,

$$
A_{x}^{(m)}=E[v^{K+\frac{j+1}{m}} \underbrace{\frac{1}{m}-1}_{\frac{1}{m}}] v^{J, k+1 / m}\left(K+1+\frac{j+1}{m}-1\right)
$$

$$
\downarrow \text { UDDin yeo of aist }
$$

$$
\operatorname{Pr}(J=j)=\frac{1}{m}
$$

$$
\begin{aligned}
& \underbrace{E\left[v^{k}\right]}_{A_{x}} \underbrace{l^{m-1 / m}}_{\frac{1}{m}(\underbrace{E[v]}_{\frac{v^{o / 2}+v^{1 / n}+\ldots+v^{m / n}}{1-v^{1 / m}}})}
\end{aligned}
$$

$$
\begin{aligned}
& A_{x}^{(m)}=v^{\frac{1}{n} X} \cdot A_{x} \cdot \frac{1-v}{1-v^{1 / n}} \quad \begin{aligned}
d & =i / 1+i \\
& =i x
\end{aligned} \\
& 1-d=x \\
& d=\frac{i}{1+i} \\
& =i \cdot A_{x}(\underbrace{\frac{1-v^{1 / n}}{v^{1 / n}}}_{\left.\frac{1}{\frac{v^{1 / m}}{1-v^{1 / m}}}\right)} \\
& A_{x}^{(n)}=\frac{i}{i^{(m)}} A_{x}
\end{aligned}
$$

Illustrative example 6
nice prole !

Continue
Each of 100 independent lives purchases asingle premium 5-year deferred whole life insurance of 10 payable at the moment of death.

$$
\begin{aligned}
& \text { You are given: } \\
& \begin{array}{rlrl}
-\mu=0.004 & Z=Z_{1}+Z_{2}+\cdots+Z_{100} \sim & N \text { Normal becauar CLP, } \\
& \downarrow & E\left[Z_{1}++Z_{101}\right]=100\left[Z_{i}\right]
\end{array} \\
& \text { - } \delta=0.006 \\
& Z_{i} \sim P V_{r v} \text {. } \\
& E\left[Z_{1}++Z_{10 .}\right]=100 E\left[Z_{i}\right] \text {, } \\
& \operatorname{Var}\left[Z_{1}+\cdots+Z_{1 \cdots}\right]=100 \operatorname{Var}\left(Z_{i}\right)^{\prime}
\end{aligned}
$$

- F) is the aggregate amount the insurer receives from the 100 lives.
- The 95th percentile of the standard Normal distribution is 1.645 .

Using a Normal approximation, calculate \underline{F} such that the probability the insurer has sufficient funds to pay all claims is 0.95 .

$$
Z=\text { final claims } \quad F=\text { collet field avow }
$$

If you pay the ApV to corve loses, whot is the prabuiluty that is unen hes enongh funs to coree you lases?

$$
\begin{aligned}
& Z=z_{1}+z_{2}+z_{3}+\ldots+z_{m} \\
& \operatorname{Pr}[F \geqslant Z]=\operatorname{Pr}[Z \leqslant F], E[z] \\
& \approx \operatorname{Pr}\left[\frac{z-E[z]}{\sqrt{\operatorname{Van}(z)}} \leq \frac{F-E[z]}{\sqrt{\operatorname{Var}(2)}}\right] \\
& \operatorname{Pr}[N \leqslant 0]=1 / 2 . \\
& F=\overbrace{E[Z]}^{E\left[Z_{1}\right]+E\left[z_{2}\right]+\cdots}
\end{aligned}
$$

Illustrative example 7

Suppose interest rate $i=6 \%$ and mortality is based on the following life table:
deaths

Calculate the following:
(a) $A_{94}=\left(v \cdot \frac{60}{560}+v^{2} \frac{60^{\prime}}{50}+v^{3} \frac{60^{\prime}}{560}+v^{\prime} \frac{60}{560}\right)+v^{5} \frac{220}{560}+v^{6} \frac{100}{560}=0.797128$
(b) $\overparen{A_{90: 5}^{1}}=v \frac{60^{\prime}}{800}+v^{2} \frac{c^{\prime}}{800}+v^{3} \frac{6_{0}^{\prime}}{800}+v^{*} \frac{c_{0}^{\prime}}{800}+v^{5} \frac{6_{0}^{\prime}}{800}=0.3159273$

(d) $A_{95: 31}=A_{95: 31}^{1}+A_{95: 31}$
0.5166944 -

$$
=\left(v^{\frac{60^{\prime}}{511}}+v^{2} \frac{6_{0}^{\prime}}{501}+v^{3} \frac{6_{0}^{\prime}}{571}\right)+\left(v^{3} \cdot \frac{320}{501}\right)=0.8581178
$$

Illustrative example 8

5.4 art em

A five-year term insurance policy is issued to (45) with benefit amount of $\$ 10,000$ payable at the end of the year of death. disut
Mortality is based on the following select and ultimate life table:

x	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	$x+3$
45	5282	5105	4856	4600	48
46	4753	4524	4322	4109	49
47	4242	4111	3948	3750	50
48	3816	3628	3480	3233	51

Calculate the APV for this insurance if $i=5 \%$.
Practice: $10000 A_{[45]: 5}$

Illustrative example 9

Note: This is a modified question from SOA Spring 2016 exam. 25.
A life insurance policy is issued to (35) with present value random variable:

$$
Z=\left\{\begin{array}{lll}
\frac{10}{10 v^{T_{35}}}, & 0<T_{35} \leq 25 & \text { varying paymut } \\
\text { issuet (3s) } \\
\underline{40} v^{T_{35}}, & 25<T_{35} \leq 45 & \text { with mations 45 yea, } \\
\underline{0}, & T>45 &
\end{array}\right.
$$

You are also given:

- Mortality follows the Standard Ultimate Life Table.
- Deaths are uniformly distributed over each year of age.
- $i=0.05$

Calculate the expected value and the standard deviation of Z.

$$
\begin{aligned}
& A P V=E[2]=10 \bar{A}_{35}+\underbrace{30}_{20} \cdot{ }_{25} E_{35} \bar{A}_{60}-40 \underbrace{}_{25} \underbrace{45 E_{35}} \bar{A}_{80} /
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\text { ien }^{2} \quad \underbrace{\frac{1.05^{2}-1}{2 \delta}}}_{\downarrow \rightarrow v^{2}} \\
& \operatorname{i}_{i \rightarrow(1+i)^{2}-1} \quad \operatorname{Var}(2)=4.318038-(1.41153)^{2}=2.093376 \\
& \operatorname{i\rightarrow c}_{i \rightarrow i^{2}}^{v^{2}=\frac{1}{1 i^{2}}} \quad \sqrt{\operatorname{Var}(2)}=\sqrt{2.051178}=1,44685 \approx 1.45
\end{aligned}
$$

Other terminologies and notations used

Expression	Other terms/symbols used
$E[Z]$	Expected Present Value (EPV)/
Actuarial Present Value (APV)	Net Single Premium (NSP) single benefit premium ,
basis) \checkmark	assumptions \downarrow
interest rate $(i) \checkmark$	interest per year effective discount rate
benefit amount $\stackrel{(b)}{=}$	sum insured $(S)^{\checkmark}$ death benefit
Expected value of Z /	$\mathrm{E}(Z)^{\prime} \quad \mathrm{E}[2]$
Variance of Z	$\operatorname{Var}(Z) \quad V[Z] \quad \operatorname{Var}[z]$

