Life Tables and Selection

Lecture: Weeks 4-5

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Chapter summary

Chapter summary

- What is a life table?
 - also called a mortality table
 - tabulation of basic mortality functions
 - deriving probabilities/expectations from a life table
- Relationships to survival functions
- Assumptions for fractional (non-integral) ages
- Select and ultimate tables
 - national life tables
 - valuation or pricing tables
- Chapter 3, DHW

Fall 2019 - Valdez

2 / 29

What is the life table?

- A tabular presentation of the mortality evolution of a cohort group of lives.
- Begin with ℓ_0 number of lives (e.g. 100,000) called the radix of the life table.
- (Expected) number of lives who are age $x:\ \ell_x = \ell_0\cdot S_0(x) = \ell_0\cdot {}_xp_0$
- (Expected) number of deaths between ages x and x + 1: $d_x = \ell_x - \ell_{x+1}$.
- (Expected) number of deaths between ages x and x+n: ${}_nd_x=\ell_x-\ell_{x+n}.$
- Conditional on survival to age x, the probability of dying within n years is: $_nq_x = _nd_x/\ell_x = (\ell_x \ell_{x+n})/\ell_x$.
- Conditional on survival to age x, the probability of living to reach age x + n is: $_n p_x = 1 _n q_x = \ell_{x+n}/\ell_x$.

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 3 / 29

Example of a life table

x	ℓ_x	d_x	q_x	p_x	\mathring{e}_x
0	100,000	680	0.006799	0.993201	77.84
1	99,320	48	0.000483	0.999517	77.37
2	99,272	29	0.000297	0.999703	76.41
3	99,243	22	0.000224	0.999776	75.43
÷	÷	:	÷	÷	:
50	93,735	413	0.004404	0.995596	30.87
51	93,323	443	0.004750	0.995250	30.01
52	92,879	475	0.005113	0.994887	29.15
53	92,404	507	0.005488	0.994512	28.30
÷	÷	÷	:	:	:
97	5,926	1,370	0.231201	0.768799	3.15
98	4,556	1,133	0.248600	0.751400	2.95
99	3,423	913	0.266786	0.733214	2.76

Source: U.S. Life Table for the total population, 2004, Center for Disease Control and Prevention (CDC)

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 4 / 29

Radix of the life table

- The radix of the life table does not have to start at age 0, e.g. start with age x_0 , so that the table starts with radix ℓ_{x_0} .
- The limiting age of the table is usually denoted by ω , in which case the table gives entries for only a period of ωx_0 .
- All the formulas still work, e.g. conditional on survival to age x, the probability of surviving to reach age x + n is:

$${}_np_x = 1 - {}_nq_x = \frac{\ell_{x+n}}{\ell_x}.$$

• Note that among ℓ_x independent lives who have reached age x, the number of survivors \mathcal{L}_n within n years is a Binomial random variable with parameters ℓ_x and $_np_x$ so that

$$\mathsf{E}(\mathcal{L}_n) = \ell_x \cdot {}_n p_x.$$

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 5 / 29

Revised example 3.1

Using Table 3.1, page 43 of DHW, calculate the following:

- the probability that (30) will survive another 5 years
- the probability that (39) will survive to reach age 40
- the probability that (30) will die within 10 years
- the probability that (30) dies between ages 36 and 38

Complete the following life table:

x	ℓ_x	d_x	p_x	q_x
40	24,983	•	•	•
41	24,541	•	•	•
42	24,175	•	•	•
43	23,880	•		•
44	23,656	•		•
45	23,495	—	—	_

Additional useful formulas

From a life table, the following formulas can also easily be verified (or use your intuition):

- $\ell_x = \sum_{k=0}^{\infty} d_{x+k}$: the number of survivors at age x should be equal to the number of deaths in each year of age for all the following years.
- ${}_{n}d_{x} = \ell_{x} \ell_{x+n} = \sum_{k=0}^{n-1} d_{x+k}$: the number of deaths within n years should be equal to the number of deaths in each year of age for the next n years.
- Finally, the probability that (x) survives the next n years but dies the following m years after that can be derived using:

$$_{n|m}q_x = {}_{n}p_x - {}_{n+m}p_x = \frac{md_{x+n}}{\ell_x} = \frac{\ell_{x+n} - \ell_{x+n+m}}{\ell_x}$$

Lecture: Weeks 4-5 (Math 3630)

Fall 2019 - Valdez 8 / 29

The force of mortality

• It is easy to show that the force of mortality can be expressed in terms of life table function as:

$$\mu_x = -\frac{1}{\ell_x} \cdot \frac{d\ell_x}{dx}$$

• Thus, in effect, we can also write

$$\ell_x = \ell_0 \cdot \exp\left(-\int_0^x \mu_z dz\right).$$

• With a simple change of variable, it is easy to see also that

$$\mu_{x+t} = -\frac{1}{\ell_{x+t}} \cdot \frac{d\ell_{x+t}}{dt} = -\frac{1}{t^p x} \cdot \frac{d_t p_x}{dt}.$$

• It follows immediately that:

$$\frac{d}{dt}{}_t p_x = -{}_t p_x \mu_{x+t}.$$

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 9 / 29

Curtate expectation of life

• Recall the expected value of K_x is called the curtate expectation of life. It can be expressed now as

$$\mathsf{E}[K_x] = e_x = \sum_{k=1}^{\infty} {}_k p_x = \sum_{k=1}^{\infty} \frac{\ell_{x+k}}{\ell_x}.$$

• The *n*-year temporary curtate expectation of life is

$$e_{x:\overline{n}|} = \sum_{k=1}^{n} {}_{k} p_{x} = \sum_{k=1}^{n} \frac{\ell_{x+k}}{\ell_{x}},$$

which gives the average number of completed years lived over the interval (x, x + n] for a life (x).

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 10 / 29

Suppose you are given the following extract from a life table:

x	ℓ_x
94	16,208
95	10,902
96	7,212
97	4,637
98	2,893
99	1,747
100	0

- Calculate e_{95} .
- **②** Calculate the variance of K_{95} , the curtate future lifetime of (95).
- $\textcircled{\textbf{3}} \quad \text{Calculate } e_{95:\overline{3}|}.$

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 11 / 29

For a life (x), you are given $\ell_x=10,000$ and the following extract from a life table:

k	d_{x+k}
0	125
1	250
2	350
3	500
4	750

Calculate ${}_{2|}q_{x+1}$ and interpret this probability.

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 12 / 29

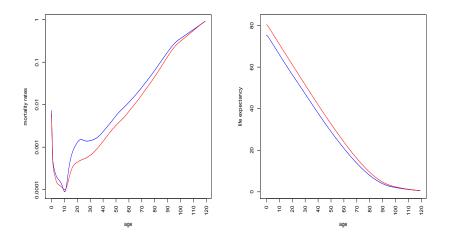


Figure: Source: Life Tables, 2007 from the Social Security Administration - male (blue), female (red)

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 13 / 29

Fractional age assumptions

- When adopting a life table (which may contain only integer ages), some assumptions are needed about the distribution between the integers.
- The two most common assumptions (or interpolations) used are (where $0 \le t \le 1$):

Interpolation (also called UDD assumption):

$$\ell_{x+t} = (1-t)\ell_x + t\ell_{x+1}$$

2 exponential interpolation (equivalent to constant force assumption):

$$\log \ell_{x+t} = (1-t)\log \ell_x + t\log \ell_{x+1}$$

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 14 / 29

Some results on the fractional age assumptions

	Linear	Exponential
Function	(UDD)	(constant force)
$_tq_x$	$t \cdot q_x$	$1 - (1 - q_x)^t$
μ_{x+t}	$\frac{q_x}{1 - t \cdot q_x}$	$\mu = -\log p_x$
$_t p_x \mu_{x+t}$	q_x	$\mu e^{-\mu t}$

Here we have $0 \le t \le 1$.

Lecture: Weeks 4-5 (Math 3630)

Fall 2019 - Valdez 15 / 29

LCONN.

You are given the following extract from a life table:

x	ℓ_x
55	85,916
56	84,772
57	83,507
58	82,114

Estimate $_{1.4}p_{55}$ and $_{0.5|1.6}q_{55}$ under each of the following assumptions for non-integral ages:

- (a) UDD; and
- (b) constant force.

Interpret these probabilities.

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 16 / 29

Assume the Uniform Distribution of Death (UDD) assumption holds between integer ages. You are given:

$$p_{0.5}p_{65} = 0.95$$

 $p_{0.3}p_{66} = 0.92$

Calculate the probability that (65) will survive the next two years.

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fractional part of the year lived

 \bullet Denote by R_x the fractional part of a year lived in the year of death. Then we have

$$T_x = K_x + R_x$$

where T_x is the time-until-death and K_x is the curtate future lifetime of (x).

ullet We can describe the joint probability distribution of (K_x,R_x) as

$$\Pr\left[(K_x = k) \cap (R_x \le s)\right] = \Pr[k < T_x \le k + s] = {}_k p_x \cdot {}_s q_{x+k},$$

for k = 0, 1, ... and for 0 < s < 1.

- The UDD assumption is equivalent to the assumption that the fractional part R_x occurs uniformly during the year, i.e. $R_x \sim U(0, 1)$.
 - It can be demonstrated that K_x and R_x are independent in this case.

UCONN,

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 18 / 29

Select and ultimate tables

Select and ultimate tables

- Group of lives underwritten for insurance coverage usually has different mortality than the general population (some test required before insurance is offered).
- Mortality then becomes a function of age [x] at selection (e.g. policy issue, onset of disability) and duration t since selection.
- \bullet For select tables, notation such as ${}_tq_{[x]}$, ${}_tp_{[x]}\text{, and }\ell_{[x]+t}\text{, are then used.}$
- However, impact of selection diminishes after some time the select period (denoted by *r*).
- In effect, we have

$$q_{[x]+j} = q_{x+j}, \ \text{ for } j \geq r.$$

Lecture: Weeks 4-5 (Math 3630)

Fall 2019 - Valdez 19 / 29

Example of a select and ultimate table

[x]	$1000q_{[x]}$	$1000q_{[x]+1}$	$1000q_{x+2}$	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	x+2
30	0.222	0.330	0.422	9,907	9,905	9,901	32
31	0.234	0.352	0.459	9,903	9,901	9,897	33
32	0.250	0.377	0.500	9,899	9,896	9,893	34
33	0.269	0.407	0.545	9,894	9,892	9,888	35
34	0.291	0.441	0.596	9,889	9,887	9,882	36

• From this table, try to compute probabilities such as:

- (a) $_{2}p_{[30]};$
- (b) ${}_5p_{[30]};$
- (c) $_{1|}q_{[31]}$; and
- (d) $_{3}q_{[31]+1}$.

I ICONN

A select and ultimate table with a three-year select period begins at selection age x.

You are given the following information:

- $\ell_{x+6} = 90,000$
- $q_{[x]} = \frac{1}{6}$
- ${}_{5}p_{[x+1]} = \frac{4}{5}$
- $_{3}p_{[x]+1} = \frac{9}{10} \cdot _{3}p_{[x+1]}$.

Evaluate $\ell_{[x]}$.

IICONN

You are given the following extract from a select and ultimate life table:

[x]	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	x+2
60	29,616	29,418	29,132	62
61	29,131	28,920	28,615	63
62	28,601	28,378	28,053	64

Calculate $1000_{0.7}q_{\rm [60]+0.8}$, assuming a constant force of mortality at fractional ages.

You are given the following extract from a select and ultimate life table:

[x]	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	x+2
65	80,625	79,954	78,839	67
66	79,137	78,402	77,252	68
67	77.575	76,770	75,578	69

Approximate $\mathring{e}_{[65]:\overline{2}]}$ using the trapezium (trapezoidal) rule with h = 0.5 and assuming UDD for fractional ages.

For a select-and-ultimate mortality table with a 3-year select period, you are given:

	x	$q_{[x]}$	$q_{[x]+1}$	$q_{[x]+2}$	q_{x+3}	x+3
	60			0.13		
(;)				0.14		64
(1)	62	0.11	0.13	0.15	0.17	65
	63	0.12	0.14	0.16	0.18	66
	64	0.13	0.15	0.17	0.19	67

- (ii) Becky was a newly selected life on 01/01/2012.
- (iii) Becky's age on 01/01/2012 is 61.
- (iv) Q is the probability on 01/01/2012 that Becky will be dead by 01/01/2017.

Calculate Q.

Lecture: Weeks 4-5 (Math 3630)

Illustrative example 10 - modified SOA MLC Spring 2012

Suppose you are given:

- $p_{50} = 0.98$
- $p_{51} = 0.96$
- $e_{51.5} = 22.4$
- The force of mortality is constant between ages 50 and 51.
- Deaths are uniformly distributed between ages 51 and 52.

Calculate $e_{50.5}$.

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez 25 / 29

I ICONN

Illustrative example 11 - modified SOA MLC Spring 2012

In a 2-year select and ultimate mortality table, you are given:

- $q_{[x]+1} = 0.96 q_{x+1}$
- $\ell_{65} = 82,358$
- $\ell_{66} = 81,284$

Calculate $\ell_{[64]+1}$.

I ICONN

Illustrative example 12 - SOA MLC Fall 2014 MC#20

For a mortality table with a select period of two years, you are given:

	\overline{x}	$q_{[x]}$	$q_{[x]+1}$	q_{x+2}	x+2
	50	0.0050	0.0063	0.0080	52
(i)	51	0.0060	0.0073	0.0090	53
	52	0.0070	0.0083	0.0100	54
	53	0.0080	0.0093	0.0110	55

(ii) The force of mortality is constant between integral ages.

 ${\rm Calculate}~1000_{2.5}q_{[50]+0.4}.$

Fall 2019 - Valdez

27 / 29

Mortality trends

Mortality projection factors

Read Section 3.11

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Only other symbol used in the MLC exam

Expression	SOA adopts the symbol
number of lives	l_x

