mortality

Life Tables and Selection

Lecture: Weeks 4-5

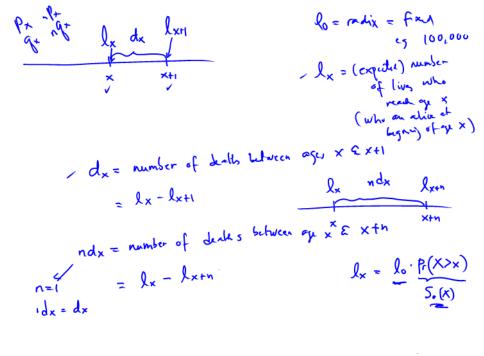
Chapter summary

- What is a life table? /
 - also called a mortality table
 - tabulation of basic mortality functions
 - deriving probabilities/expectations from a life table *
- Relationships to survival functions /
- Assumptions for fractional (non-integral) ages
- Select and ultimate tables /
 - national life tables
 - valuation or pricing tables
- Chapter 3, DHW

15

What is the life table?

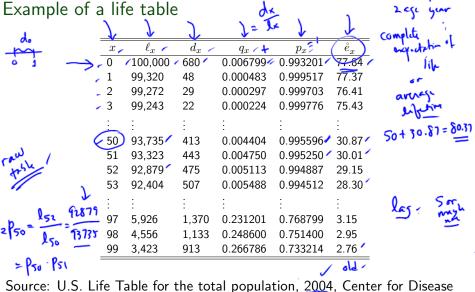
- A tabular presentation of the mortality evolution of a cohort group of lives.
- Begin with ℓ_0 number of lives (e.g. 100,000) called the radix of the life table.
- \bullet (Expected) number of lives who are age x: $\ell_x = \ell_0 \cdot S_0(x) = \ell_0 \cdot {}_x p_0$
- (Expected) number of deaths between ages x and x+1: $d_x = \ell_x \ell_{x+1}$.
- (Expected) number of deaths between ages x and x+n:
- Conditional on survival to age x, the probability of dying within n years is: $\underline{nq_x} = \underline{nd_x/\ell_x} = (\underline{\ell_x \ell_{x+n}})/\ell_x$.
- Conditional on survival to age x, the probability of living to reach age x+n is: ${}_np_x=1-{}_nq_x=\ell_{\underline{x+n}}/\ell_{\underline{x}}.$



3:

2 lxm

The life table example of a life table



Control and Prevention (CDC)

Radix of the life table

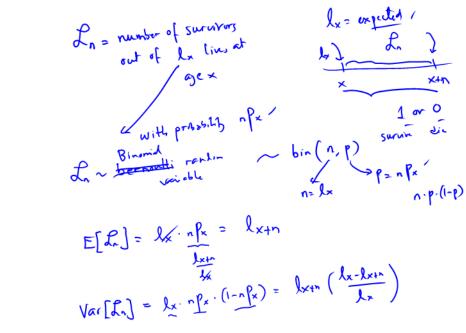
- The radix of the life table does not have to start at age 0, e.g. start with age x_0 , so that the table starts with radix ℓ_{x_0} .
- The limiting age of the table is usually denoted by ω , in which case the table gives entries for only a period of $\omega-x_0$.
- ullet All the formulas still work, e.g. conditional on survival to age x, the probability of surviving to reach age x+n is:

$$\underline{np_x} = 1 - nq_x = \underbrace{\ell_{x+n}}_{\ell_x}.$$

• Note that among ℓ_x independent lives who have reached age x, the number of survivors \mathcal{L}_n within n vears is a Binomial random variable with parameters ℓ_x and p_x so that

$$\mathsf{E}(\mathcal{L}_n) = \ell_x \cdot {}_n p_x.$$

Lecture: Weeks 4-5 (Math 3630)



The life table Table 3.1

Revised example 3.1

30 looos 34.78/ 31 9965.22 38.10

Using Table 3.1, page 43 of DHW, calculate the following:

• the probability that (30) will survive another 5 years

- the probability that (39) will survive to reach age 40
- the probability that (30) will die within 10 years
- the probability that (30) dies between ages 36 and 38 $P_{31} = \frac{l_{40}}{l_{31}} = \frac{9434.08 80.11}{9434.08} = l_{31}$

CUNN

UCON

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

30

Fall 2019 - Valdez

$$6|2q_{30} = \frac{l_{3c} - l_{58}}{l_{30}} /$$

$$= \frac{d_{3c} + d_{37}}{l_{50}} /$$

$$= \frac{d_{3c} + d_{37}}{l_{50}} /$$

$$= \frac{l_{3c} + d_{37}}{l_{50}} /$$

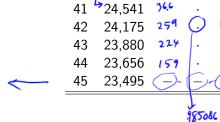
$$= \frac{l_{3c} + d_{37}}{l_{4c}} /$$

$$= \frac{l_{3c} + d_{37}}{l_{4c}} /$$

$$= \frac{l_{3c} + d_{37}}{l_{4c}} /$$

$$= \frac{l_{3c} - l_{17}}{l_{30}} /$$

Complete the following life table:



40

 ℓ_x

>24,983

 d_x

 p_x

.014914

UCONN.

From a life table, the following formulas can also easily be verified (or use your intuition):

- $\ell_x = \sum_{k=0}^{\infty} d_{x+k}$: the number of survivors at age x should be equal to the number of deaths in each year of age for all the following years.
- $_nd_x=\ell_x-\ell_{x+n}=\sum_{k=0}^{n-1}d_{x+k}$: the number of deaths within n years should be equal to the number of deaths in each year of age for the next n years.
- ullet Finally, the probability that (x) survives the next n years but dies the following m years after that can be derived using:

$$a_{n|m}q_x = {}_{n}p_x - {}_{n+m}p_x = \frac{{}_{m}d_{x+n}}{\ell_x} = \frac{\ell_{x+n} - \ell_{x+n+m}}{\ell_x}.$$

Lecture: Weeks 4-5 (Math 3630)

$$l_{x} = d_{x} + d_{x+1} + \dots = \sum_{k=0}^{\infty} d_{x+k}$$

$$l_{x} = d_{x} + d_{x+1} + \dots + d_{x+n-1}$$

$$= d_{x} + d_{x+1} + \dots + d_{x+n-1}$$

$$= d_{x} + d_{x+1} + \dots + d_{x+n-1}$$

$$= d_{x} + d_{x+1} + \dots + d_{x+n+1}$$

$$= d_{x} + d_{x+1} + \dots + d_{x+n+1} + \dots + d_{x+n+1}$$

$$= d_{x} + d_{x+1} + \dots + d_{x+n+1} + \dots + d_{x+n+1}$$

$$= d_{x} + d_{x+1} + \dots + d_{x+n+1} + \dots + d_$$

$$S_{o}(x) = \underset{=}{\times} P_{o} = \underbrace{\frac{1}{1}}_{A_{o}} = \underbrace{\frac{1}{1}}_{A_{o}} = \underbrace{\frac{1}{1}}_{A_{o}} = \underbrace{\frac{1}{1}}_{A_{o}} \underbrace{\frac{1}{1}}_{A_{$$

$$= \frac{\int_{X+t}^{X+t} \frac{d}{dt} \int_{X+t}^{X+t} \frac{$$

= Lx+t/le

- lx+t/lx

= -d lag lx+

Sx(t) = prob that (x) will survive the next t years?

The force of mortality

• It is easy to show that the force of mortality can be expressed in terms of life table function as:

$$\mu_x = -\frac{1}{\ell_x} \cdot \frac{d\ell_x}{dx}.$$

• Thus, in effect, we can also write

$$\ell_x = \ell_0 \cdot \exp\left(-\int_0^x \mu_z dz\right).$$

• With a simple change of variable, it is easy to see also that

$$\mu_{x+t} = -\frac{1}{\ell_{x+t}} \cdot \frac{d\ell_{x+t}}{dt} = \frac{1}{\ell_x} \cdot \frac{d\ell_x}{dt}.$$

• It follows immediately that:

$$\frac{d}{dt} p_x = S_{\times}(t) = P(T_{\times} > t) \qquad \left(\frac{d}{dt} p_x = -p_x \mu_{x+t}\right) = \frac{d}{dt} P(T_{\times} > t)$$

Curtate expectation of life

Curtate lifetime is a discorte

• Recall the expected value of K_x is called the curtate expectation of life. It can be expressed now as

$$\mathsf{E}[K_x] = \sum_{k=1}^{\infty} {}_k p_x = \sum_{k=1}^{\infty} \frac{\ell_{x+k}}{\ell_x}.$$

• The *n*-year temporary curtate expectation of life is

$$e_{x:\overline{n}|} = \sum_{k=1}^{n} {}_{k}p_{x} = \sum_{k=1}^{n} \frac{\ell_{x+k}}{\ell_{x}},$$

which gives the average number of completed years lived over the interval $(\underline{x}, \underline{x} + \underline{n}]$ for a life (\underline{x}) .

life table => probability distribution of curtat lafetime
$$Kx$$

$$P_r[K_x = k] = |K| \int_X |K| = |K| \int_X |K| = |K| =$$

$$E[K_{\mathbf{z}}] = \sum_{\kappa=0}^{\infty} |\kappa|^{2} |\kappa|^{2} = \sum_{k=1}^{\infty} \frac{1}{k^{2}} |\kappa|^$$

$$E[K_{\mathbf{z}}] = \sum_{\kappa=0}^{\infty} |\kappa|^{p_{\kappa}} [K_{x} = k]$$

$$\sum_{k=1}^{\infty} |\kappa|^{p_{\kappa}} = \sum_{k=1}^{\infty} \frac{1}{|k|} = C_{x} = \sup_{\kappa \neq 0} \lim_{k \neq 1} C_{k}$$

$$C_{x:n} = E[\min(K_{x}, n)] = \sum_{k=1}^{n} |\kappa|^{p_{\kappa}}$$

$$Var(k_x) = E[k_x^2] - e_x^2$$

$$\sum_{k=0}^{\infty} k^2 \cdot p_i[k_x=k]$$

$$\sum_{k=0}^{\infty} \frac{d_{x+k}}{d_x}$$

Illustrative example 2

Suppose you are given the following extract from a life table:

	\overline{x}	$\overline{\ell_x}$	
	94	16,208 [×]	_
	95	10,902	
	96	7,212 ′	
	97	4,637 ′	
	98	2,893 ′	
	99	1,747 🕗	= 1.512975
	- 100	0 <	
• Calculate e_{95} . $\stackrel{\circ}{\sim}$ $\underset{K=_{1}}{\overset{\circ}{\sim}}$	Pas = lac	195	1090L

- \bigcirc Calculate the variance of K_{95} , the curtate future lifetime of (95).
- Calculate $e_{95:\overline{3}}$. = $\frac{19c + 147 + 148}{160} = \frac{721c + 4437 + 1483}{160} = \frac{1}{160}$ 1.352229

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

$$Var(k_{15}) = ?$$

$$eqs = 1.512475$$

$$\sum_{K=1}^{\infty} K^{L} \cdot \frac{fr(K_{15} = k)}{d_{15}+k} \cdot \frac{1}{f_{15}}$$

$$\frac{k}{15} \cdot \frac{p_{1}(k_{15} = k)}{10702} \cdot \frac{k^{2}}{4} \cdot \frac{p_{1}(k_{15} = k)}{10102} \cdot \frac{1}{10}$$

$$\frac{k}{10} \cdot \frac{1744}{10102} \cdot \frac{1}{10}$$

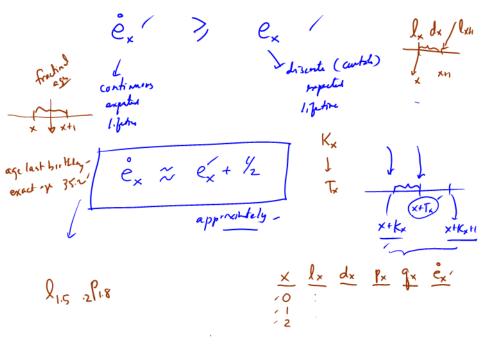
$$\frac{k}{10} \cdot \frac{1744}{10102} \cdot \frac{1}{10}$$

$$\frac{k}{10} \cdot \frac{1744}{10102} \cdot \frac{1}{10}$$

$$\frac{k}{10} \cdot \frac{1}{10102} \cdot \frac{1}{10}$$

$$\frac{k}{10} \cdot \frac{1}{10102} \cdot \frac{1}{10002} \cdot \frac{1}{10002} \cdot \frac{1}{10002}$$

$$\frac{k}{10002} \cdot \frac{1}{10002} \cdot \frac{1}$$



The life table examples

Illustrative example 3

$$\frac{\chi_{x}}{100} \quad \frac{\chi_{x}}{125} \Rightarrow 10,000 - 125 = \frac{987}{125}$$

For a life (x), you are given $\ell_x=10,000$ and the following extract from a life table:

$$\frac{1}{10,000} \times 0 = \frac{125}{k} \times \frac{1}{d_{x+k}} \times 0 = \frac{125}{125} \times 1 = \frac{500}{9875} \times 1 =$$

Calculate

will be between ago x+3 and x+4 12 / 29

X41

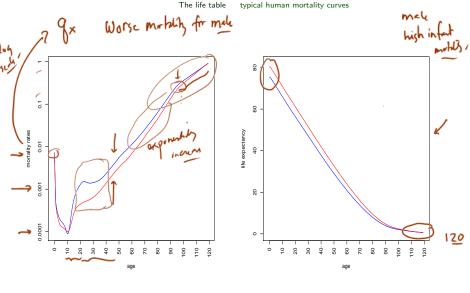
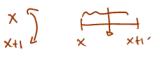


Figure: Source: Life Tables, 2007 from the Social Security Administration - male (blue), female (red)

Life Tables and Selection

UCONN

Fractional age assumptions

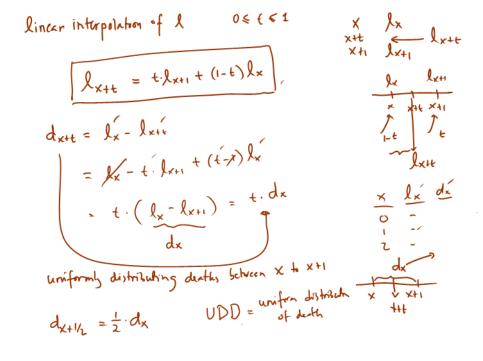


- When adopting a life table (which may contain only integer ages), some assumptions are needed about the distribution between the integers.
- The two most common assumptions (or interpolations) used are (where $0 \le t \le 1$):
 - [Inear interpolation] (also called UDD) assumption): $\ell_{x+t} = (1-t)\ell_x + t\ell_{x+1}$

- exponential interpolation (equivalent to constant force) assumption):

$$\int_{\mathcal{L}_{x}} \log \ell_{x+t} = (1-t) \log \ell_{x} + t \log \ell_{x+1}$$

$$\frac{1}{\sqrt{1 + \frac{1}{2}}} = \frac{1}{\sqrt{1 + \frac{1}{2}}$$



$$(e_{i})^{t}$$
 let $R = (e_{i})^{t}$ be twen e_{i}

 $t R M_{x+e} = \frac{-d}{dt} R = \frac{-(R_x)^t}{t} \log R = (e^{-\mu})^t - \mu = (\mu e^{-\mu t}) \frac{\delta(t \leq 1)}{\delta(t \leq 1)}$

Some results on the fractional age assumptions

	1	\mathcal{I}	
Function	Linear (UDD)	Exponential (constant force)	×_
$\int_t q_x$	$t \cdot q_x$	$1 - (1 - q_x)^t$	· Px = (Px)
μ_{x+t}	$\frac{q_x}{1 - t \cdot q_x}$	$\mu = -\log p_x$	µ=-los Px / Px=e-m
$_tp_x\mu_{x+t}$	q_x	$\mu e^{-\mu t}$	1× - E

Here we have $0 \le t \le 1$.

Lecture: Weeks 4-5 (Math 3630)

Illustrative example 4

You are given the following extract from a life table:

\overline{x}	ℓ_x
55	85,916
56	84,772
57	83,507
58	82,114

examples

 $\left(c_{0.5|1.6}q_{55}
ight)$ under each of the following assumptions for non-integral ages:

- (a) UDD; and
- (b) constant force.

Interpret these probabilities.

$$\frac{14 \int_{55}^{65} = \frac{1}{1} \int_{55}^{65} = \frac{1}{1} \int_{55}^{65} \frac{1}{1} \int_{57}^{65} = \frac{1}{1} \int_{57}^{65} \frac$$

Illustrative example 5

Assume the Uniform Distribution of Death (UDD) assumption holds between integer ages. You are given:

ween integer ages. You are given:
$$0.5p_{65} = 0.95 \text{ for } = 1 - .5 \text{ for } = 1 - .95 = .05 \Rightarrow .5 \text{ for } = .05 \Rightarrow .0$$

Calculate the probability that (65) will survive the next two years.

$$\frac{3}{9}66 = 1 - .92 = .08$$

$$\frac{65}{13}$$

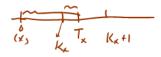
$$\frac{65}{2} = \frac{65}{13}$$

$$\frac{65}{2} = \frac{65}{13} = \frac{65}{13}$$

$$\frac{65}{2} = \frac{65}{13} = \frac{65}{13}$$

Lecture: Weeks 4-5 (Math 3630)

Fractional part of the year lived



Tx - Kx = Rx

ullet Denote by R_x the fractional part of a year lived in the year of death.

Then we have

$$T_x = K_x + K_x$$

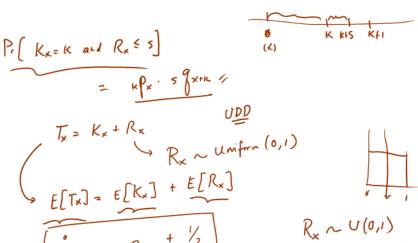
where T_x is the time-until-death and K_x is the curtate future lifetime of (x).

ullet We can describe the joint probability distribution of (K_x,R_x) as

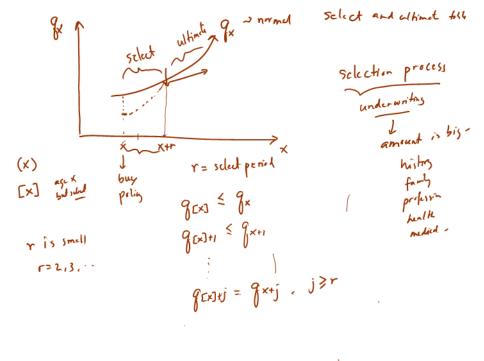
$$\Pr\left[(K_x = k) \cap (R_x \le s)\right] = \Pr[k < T_x \le k + s] = \underbrace{p_x \cdot sq_{x+k}},$$
 for $k = 0, 1, \ldots$ and for $0 < s < 1$.

- The UDD assumption is equivalent to the assumption that the fractional part R_x occurs uniformly during the year, i.e. $R_x \sim \mathsf{U}(0,1)$.
 - ullet It can be demonstrated that K_x and R_x are independent in this case.

LICONN

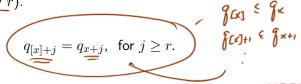


$$\mathring{e}_{x} \approx e_{x} + x$$

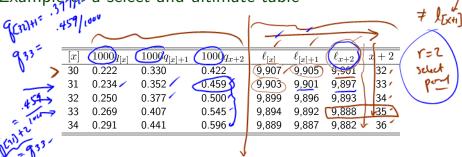


Select and ultimate tables

- Group of lives underwritten for insurance coverage usually has different mortality than the general population (some test required before insurance is offered).
- Mortality then becomes a function of age [x] at selection (e.g. policy issue, onset of disability) and duration t since selection.
- \bullet For select tables, notation such as $_tq_{[x]}$, $_tp_{[x]}$, and $\ell_{[x]+t}$, are then used.
- However, impact of selection diminishes after some time the select period (denoted by r).
- In effect, we have



💅 select and ultimate table



• From this table, try to compute probabilities such as:

From this table, try to compute probabilities such as:

(a)
$$_{2}p_{[30]}$$
;

(b) $_{5}p_{[30]}$;

(c) $_{1}q_{[31]}$; and

(fig. 2) $_{1}p_{[30]}$;

(g) $_{1}p_{[30]}$;

(h) $_{2}p_{[30]}$;

(h) $_{3}p_{[30]}$;

(h) $_{4}p_{[30]}$;

(h) $_{5}p_{[30]}$;

(h) $_{5}p_{[30]}$;

(h) $_{5}p_{[30]}$;

(h) $_{5}p_{[30]}$;

$$(c)_{1|q_{[31]}}$$
; and $(d)_{3q_{[31]+1}}$ $(d)_{3q_{[31]+1}}$ $(d)_{3q_{[31]+1}}$ $(d)_{3q_{[31]+1}}$ $(d)_{3q_{[31]+1}}$ $(d)_{3q_{[31]+1}}$

Select and whimeto tester underwriting = schedion an + be insured -[x]+r r = select period sept < dex) & dex) & dex 9(x)+j= 9x+j, fr j=r 9(x)+r = 9x+r

Illustrative example 6

A select and ultimate table with a three-year select period begins at selection age x.

•
$$\ell_{x+6} = 90,000$$

You are given the following information:
$$e \ell_{x+6} = 90,000$$

$$e q_{[x]} = \frac{1}{6} \Rightarrow \lim_{x \to \infty} \frac{5}{6} \Rightarrow$$

Evaluate
$$\ell_{[x]}$$
.

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez

Select and ultimate tables

exponential => constant free

You are given the following extract from a select and ultimate life table:

	=	x+2	l 1.2	$\ell_{[x]+1}$	$\ell_{[r]}$	[x]
phymal	_	62		$\frac{v[x]+1}{29,418}$	[]	F., 1
[60+18 C60+1		63	28,615	28,920	29,131	61
	_	64	28,053	28,378	28,601	62
	_					

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez

22 / 29

Illustrative example 8

You are given the following extract from a select and ultimate life table:

$\overline{[x]}$	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}	x+2
65	80,625	79,954	78,839	67
66	79,137	78,402	77,252	68
67	77.575	76,770	75,578	69

Approximate $\mathring{e}_{[65];\overline{2}]}$ using the trapezium (trapezoidal) rule with $\underline{h=0.5}$

and assuming
$$UDD$$
 for fractional ages.

$$e_{(cs):2)} = \int_{0}^{2} dt \int_{(cs)}^{c} dt = \int_{80615}^{2} \int_{0}^{c} \int_{(cs)+t}^{c} dt$$

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez

$$\frac{1}{80625} \int_{0}^{\pi} l_{[cs]+e} dt + \int_{V_{Z}}^{\pi} l_{[cs]+e} dt + \dots$$

$$\frac{1}{2} \left[\frac{1}{2} \left(\frac{l_{[cs]}+l_{[cs]+k}}{2} \right) + \frac{1}{2} \left(\frac{l_{(cs)+k}+l_{[cs]+l}}{2} \right) + \dots \right]_{n}^{b} f(e) dt$$

$$= \frac{1}{2} \left[\frac{f(a)+f(b)}{2} \right]_{n}^{b}$$

Illustrative example 9

For a select-and-ultimate mortality table with a 3-year select period, you

school note are given: die x + 3x $q_{[x]}$ $q_{[x]+1}$ $q_{[x]+2}$ q_{x+3} 60 0.090.110.13 0.1563 1/1/2017 1/1/2012 0.14 <0.16 <64 61 0.10^{\prime} 0.12^{-1} 62 0.110.130.1565 [61] 0.1763 0.1266 0.140.160.1864 0.130.170.1967 0.15= 1- Pan PaniPani

(ii) Becky was a newly selected life on
$$01/01/2012$$
.

(iii) Becky's age on
$$01/01/2012$$
 is $61.$
(iv) Q is the probability on $01/01/2012$ that Becky will be dead by

01/01/2017. .525/231

Calculate Q.

24 / 29

t9x = t.9x Illustrative example 10 - modified SOA MLC Spring 2012

e_{50.5} = e_{50.5}:
$$\frac{1}{1}$$
 + $\frac{1}{1}$ + $\frac{1}{1}$ + $\frac{1}{1}$ + $\frac{1}{1}$ + $\frac{1}{1}$

P50.5

Suppose you are given:

•
$$p_{50} = 0.98$$

•
$$p_{51} = 0.96$$

$$\bullet$$
 $e_{51.5} = 22.4$

- The force of mortality is constant between ages 50 and 51.
- Deaths are uniformly distributed between ages 51 and 52.

UDD:
$$t \beta_x = t \cdot \beta_x$$
 $C_F: t \beta_x \cdot (\beta_x)^t$

Lecture: Weeks 4-5 (Math 3630)

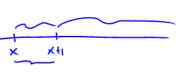
Life Tables and Selection

Fall, 2019 - Valdez

 $(98)^{-5}$ CF $(98)^{-5}$ $(98)^{-5}$ (99) (1-.5,951) = 22.70152

25 / 29

recursive firmules for e



X -> X+1

$$e_{x} = e_{x:77} + p_{x} \cdot e_{x+1}$$
 $\int_{50.5}$
 $\int_{50.5}$
 $\int_{50.5}$

Illustrative example 11 - modified SOA MLC Spring 2012

In a 2-year select and ultimate mortality table, you are given:

UCONN,

Lecture: Weeks 4-5 (Math 3630)

Life Tables and Selection

Fall 2019 - Valdez

Survival

$$S_{n}(a) = 1$$

$$S_{n}(ab) = 0$$

$$\frac{d}{dx}S(x) = - ... < 0$$

Illustrative example 12 - SOA MLC Fall 2014 MC#20

For a mortality table with a select period of two years, you are given:

	\overline{x}	$q_{[x]}$	$q_{[x]+1}$	q_{x+2}	x+2
	50	0.0050	0.0063	0.0080	52
(i)	51	0.0060	0.0073	0.0090	53
	52	0.0070	0.0083	0.0100	54
	53	0.0080	0.0093	0.0110	55

(ii) The force of mortality is constant between integral ages.

Calculate
$$1000_{2.5}q_{[50]+0.4}$$
. Proctice on this

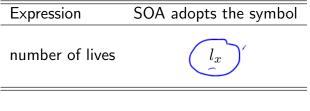
Lecture: Weeks 4-5 (Math 3630)

Mortality projection factors

/ laker on

Read Section 3.11

Only other symbol used in the MLC exam



Lecture: Weeks 4-5 (Math 3630)