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Chapter summary

Chapter summary

Survival models

Age-at-death random variable

Time-until-death random variables

Force of mortality (or hazard rate function)

Some parametric models

De Moivre’s (Uniform), Exponential, Weibull, Makeham, Gompertz

Generalization of De Moivre’s

Curtate future lifetime

Chapter 2 (Dickson, Hardy and Waters = DHW)
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Age-at-death survival function

Age-at-death random variable

X is the age-at-death random variable; continuous, non-negative

X is interpreted as the lifetime of a newborn (individual from birth)

Distribution of X is often described by its survival distribution
function (SDF):

S0(x) = Pr[X > x]

other term used: survival function

Properties of the survival function:

S0(0) = 1: probability a newborn survives 0 years is 1.

S0(∞) = limx→∞ S0(x) = 0: all lives eventually die.

non-increasing function of x: not possible to have a higher probability
of surviving for a longer period.
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Age-at-death CDF and density

Cumulative distribution and density functions

Cumulative distribution function (CDF): F0(x) = Pr[X ≤ x]

nondecreasing; F0(0) = 0; and F0(∞) = 1.

Clearly we have: F0(x) = 1− S0(x)

Density function: f0 (x) =
dF0(x)

dx
= −dS0(x)

dx

non-negative: f0(x) ≥ 0 for any x ≥ 0

in terms of CDF: F0(x) =

∫ x

0

f0(z)dz

in terms of SDF: S0(x) =

∫ ∞
x

f0(z)dz
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Age-at-death force of mortality

Force of mortality

The force of mortality for a newborn at age x:

µx =
f0(x)

1− F0(x)
=
f0(x)

S0(x)
= − 1

S0(x)

dS0(x)

dx
= −d logS0(x)

dx

Interpreted as the conditional instantaneous measure of death at x.

For very small ∆x, µx∆x can be interpreted as the probability that a
newborn who has attained age x dies between x and x+ ∆x:

µx∆x ≈ Pr[x < X ≤ x+ ∆x|X > x]

Other term used: hazard rate at age x.
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Age-at-death force of mortality

Some properties of µx

Some important properties of the force of mortality:

non-negative: µx ≥ 0 for every x > 0

divergence:

∫ ∞
0

µxdx =∞.

in terms of SDF: S0(x) = exp

(
−
∫ x

0
µzdz

)
.

in terms of PDF: f0(x) = µx exp

(
−
∫ x

0
µzdz

)
.
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Age-at-death moments

Moments of age-at-death random variable

The mean of X is called the complete expectation of life at birth:

e̊0 = E[X] =

∫ ∞
0

xf0 (x) dx =

∫ ∞
0

S0 (x) dx.

The RHS of the equation can be derived using integration by parts.

Variance:

Var[X] = E
[
X2
]
− (E[X])2 = E

[
X2
]
− (̊e0)

2 .

The median age-at-death m is the solution to

S0(m) = F0(m) =
1

2
.
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Special laws of mortality

Some special parametric laws of mortality

Law/distribution µx S0 (x) Restrictions

De Moivre 1/ (ω − x) 1− (x/ω) 0 ≤ x < ω
(uniform)

Constant force µ exp (−µx) x ≥ 0, µ > 0
(exponential)

Gompertz Bcx exp

[
− B

log c
(cx − 1)

]
x ≥ 0, B > 0, c > 1

Makeham A+Bcx exp

[
−Ax− B

log c
(cx − 1)

]
x ≥ 0, B > 0, c > 1,

A ≥ −B

Weibull kxn exp

(
− k

n+ 1
xn+1

)
x ≥ 0, k > 0, n > 1
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Special laws of mortality
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Figure: Makeham’s law: A = 0.002, B = 10−4.5, c = 1.10
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Special laws of mortality illustrative example 1

Illustrative example 1

Suppose X has survival function defined by

S0(x) =
1

10
(100− x)1/2, for 0 ≤ x ≤ 100.

1 Explain why this is a legitimate survival function.

2 Find the corresponding expression for the density of X.

3 Find the corresponding expression for the force of mortality at x.

4 Compute the probability that a newborn with survival function
defined above will die between the ages 65 and 75.

Solution to be discussed in lecture.
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Special laws of mortality illustrative example 1

Practice problem - SOA MLC Spring 2016 Question #2

You are given the survival function:

S0(x) =
(

1− x

60

)1/3
, for 0 ≤ x ≤ 60.

Calculate 1000µ35.
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Time-until-death

2.2 Future lifetime random variable

For a person now age x, its future lifetime is Tx = X − x. For a
newborn, x = 0, so that we have T0 = X.

Life-age-x is denoted by (x).

SDF: It refers to the probability that (x) will survive for another t
years.

Sx(t) = Pr[T0 > x+ t|T0 > x] =
S0(x+ t)

S0(x)
= pt x = 1− qt x

CDF: It refers to the probability that (x) will die within t years.

Fx(t) = Pr[T0 ≤ x+ t|T0 > x] =
S0(x)− S0(x+ t)

S0(x)
= qt x
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Time-until-death

- continued

Density:

fx(t) =
dFx(t)

dt
= −dSx(t)

dt
=
f0(x+ t)

S0(x)
.

Remark: If t = 1, simply use px and qx.

px refers to the probability that (x) survives for another year.

qx = 1− px, on the other hand, refers to the probability that (x) dies
within one year.
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Time-until-death conditions to be valid

Conditions to be valid

To reiterate, these are the conditions for a survival function to be
considered valid:

Sx(0) = 1: probability a person age x survives 0 years is 1.

Sx(∞) = limt→∞ Sx(0) = 0: all lives, regardless of age, eventually
die.

The survival function Sx(t) for a life (x) must be a non-increasing
function of t.
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Time-until-death force of mortality

2.3 Force of mortality of Tx

In deriving the force of mortality, we can use the basic definition:

µx(t) =
fx(t)

Sx(t)
=
f0(x+ t)

S0(x)
· S0(x)

S0(x+ t)

=
f0(x+ t)

S0(x+ t)
= µx+t.

This is easy to see because the condition of survival to age x+ t
supercedes the condition of survival to age x.

This results implies the following very useful formula for evaluating
the density of Tx:

fx(t) = pt x × µx+t
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Time-until-death 2.4 special probability symbol

Special probability symbol

The probability that (x) will survive for t years and die within the
next u years is denoted by qt|u x. This is equivalent to the probability

that (x) will die between the ages of x+ t and x+ t+ u.

This can be computed in several ways:

t|uqx = Pr[t < Tx ≤ t+ u]

= Pr[Tx ≤ t+ u]− Pr[Tx < t]

= qt+u x − qt x

= pt x − pt+u x

= pt x × qu x+t.

If u = 1, prefix is deleted and simply use qt| x.
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Time-until-death

Other useful formulas

It is easy to see that

Fx(t) =

∫ t

0
fx(s)ds

which in actuarial notation can be written as

qt x =

∫ t

0
ps x µx+sds

See Figure 2.3 for a very nice interpretation.

We can generalize this to

t|uqx =

∫ t+u

t
ps x µx+sds
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Time-until-death curtate future lifetime

2.6 Curtate future lifetime

Curtate future lifetime of (x) is the number of future years completed
by (x) prior to death.

Kx = bTxc, the greatest integer of Tx.

Its probability mass function is

Pr[Kx = k] = Pr[k ≤ Tx < k + 1] = Pr[k < Tx ≤ k + 1]

= Sx(k)− Sx(k + 1) = qk+1 x − qk x = qk| x,

for k = 0, 1, 2, ...

Its distribution function is

Pr[Kx ≤ k] =

k∑
h=0

qh| x = qk+1 x.
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Expectation of life

2.5/2.6 Expectation of life

The expected value of Tx is called the complete expectation of life:

e̊x = E[Tx] =

∫ ∞
0

tfx(t)dt =

∫ ∞
0

t pt xµx+tdt =

∫ ∞
0

pt xdt.

The expected value of Kx is called the curtate expectation of life:

ex = E[Kx] =

∞∑
k=0

k · Pr[Kx = k] =

∞∑
k=0

k · qk| x =

∞∑
k=1

pk x.

Proof can be derived using discrete counterpart of integration by parts
(summation by parts). Alternative proof will be provided in class.

Variances of future lifetime can be similarly defined.
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Expectation of life Examples

Illustrative example 2

Let X be the age-at-death random variable with

µx =
1

2(100− x)
, for 0 ≤ x < 100.

1 Give an expression for the survival function of X.

2 Find f36(t), the density function of future lifetime of (36).

3 Compute p20 36, the probability that life (36) will survive to reach age
56.

4 Compute e̊36, the average future lifetime of (36).
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Expectation of life Examples

Illustrative example 3

Suppose you are given that:

e̊0 = 30; and

S0(x) = 1− x

ω
, for 0 ≤ x ≤ ω.

Evaluate e̊15.

Solution to be discussed in lecture.
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Expectation of life Examples

Illustrative example 4

For a group of lives aged 40 consisting of 30% smokers (sm) and the rest,
non-smokers (ns), you are given:

For non-smokers, µnsx = 0.05, for x ≥ 40

For smokers, µsmx = 0.10, for x ≥ 40

Calculate q65 for a life randomly selected from those who reach age 65.
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Expectation of life

Temporary (partial) expectation of life

We can also define temporary (or partial) expectation of life:

E
[

min(Tx, n)
]

= e̊x:n =

∫ n

0
pt xdt

This can be interpreted as the average future lifetime of (x) within the
next n years.

Suppose you are given:

µx =

{
0.04, 0 < x < 40

0.05, x ≥ 40

Calculate e̊
25: 25
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Expectation of life generalized De Moivre’s

Generalized De Moivre’s law

The SDF of the so-called Generalized De Moivre’s Law is expressed as

S0(x) =
(

1− x

ω

)α
for 0 ≤ x ≤ ω.

Derive the following for this special type of law of mortality:

1 force of mortality

2 survival function associated with Tx

3 expectation of future lifetime of x

4 can you find explicit expression for the variance of Tx?
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generalized De Moivre’s illustrative example

Illustrative example

We will do Example 2.6 in class.
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Gompertz law example 2.3

Example 2.3

Let µx = Bcx, for x > 0, where B and c are constants such that
0 < B < 1 and c > 1.

Derive an expression for Sx(t).
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Others typical mortality

Typical mortality pattern observed

High (infant) mortality rate in the first year after birth.

Average lifetime (nowadays) range between 70-80 - varies from
country to country.

Fewer lives/deaths observed after age 110 - supercentenarian is the
term used to refer to someone who has reached age 110 or more.

The highest recorded age at death (I believe) is 122.

Different male/female mortality pattern - females are believed to live
longer.
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Others substandard mortality

Substandard mortality

A substandard risk is generally referred to someone classified by the
insurance company as having a higher chance of dying because of:

some physical condition
family or personal medical history
risky occupation
dangerous habits or lifestyle (e.g. skydiving)

Mortality functions are superscripted with s to denote substandard:
qsx and µsx.

For example, substandard mortality may be obtained from a standard
table using:

1 adding a constant to force of mortality: µs
x = µx + c

2 multiplying a fixed constant to probability: qsx = min(kqx, 1)

The opposite of a substandard risk is preferred risk where someone is
classified to have better chance of survival.
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Others substandard mortality

Practice problem - SOA MLC Fall 2000 Question #4

Mortality for Audra, age 25, follows De Moivre’s law with ω = 100. If she
takes up hot air ballooning for the comming year, her assumed mortality
will be adjusted so that for the coming year only, she will have a constant
force of mortality of 0.1.

Calculate the decrease in the 11-year temporary complete life expectancy
for Audra if she takes up hot air ballooning.
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Others substandard mortality

Illustrative example 5

You are given:

Mortality for standard lives follows the Standard Ultimate Life Table
(SULT).

The force of mortality for standard lives age 45 + t is represented as
µSULT45+t .

The force of mortality for substandard lives age 45 + t, µsub45+t, is
defined by

µsub45+t =

{
µSULT45+t + 0.05, for 0 ≤ t < 1

µSULT45+t , for t ≥ 1

Calculate the probability that a substandard 45-year-old will die within the
next two years.
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Others substandard mortality

Practice problem - SOA LTAM Spring 2019 Question #3

You are given:

A life table uses a Makeham’s mortality model with parameters
A = 0.00022, B = 2.7× 10−6, c = 1.124

p10 50 = 0.9803

Calculate
d

dt
qt 50 at t = 10.
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Final remark

Final remark - other contexts

The notion of a lifetime or survival learned in this chapter can be
applied in several other contexts:

engineering: lifetime of a machine, lifetime of a lightbulb

medical statistics: time-until-death from diagnosis of a disease, survival
after surgery

finance: time-until-default of credit payment in a bond,
time-until-bankruptcy of a company

space probe: probability radios installed in space continue to transmit

biology: lifetime of an organism

other actuarial context: disability, sickness/illness, retirement,
unemployment
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Final remark other notations

Other symbols and notations used

Expression Other symbols used

probability function P (·) Pr(·)

survival function of newborn SX(x) S(x) s(x)

future lifetime of x T (x) T

curtate future lifetime of x K(x) K

survival function of x STx(t) ST (t)

force of mortality of Tx µTx(t) µx(t)
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