$$
L_{0}=\text { loss at issue }
$$

radon variast!

Premium Calculation

Lecture: Weeks 10-12

Preliminaries

An insurance policy (life insurance or life annuity) is funded by contract premiums:

- once (single premium) made usually at time of policy issue, or
- a series of payments (usually contingent on survival of policyholder) with first payment made at policy issue
- to cover for the benefits, expenses associated with initiating/maintaining contract, profit margins, and deviations due to adverse experience.

Net premiums (or sometimes called benefit premiums)

- considers only the benefits provided
- nothing allocated to pay for expenses, profit or contingency margins

Gross premiums (or sometimes called expense-loaded premiums)

- covers the benefits and includes expenses, profits, and contingency margins
(G) (discrit) whde lif insmance of $B=1$, issuce $h(x)$
(®1) fully diserti whil life'
(11) $P=$ net \cdot (yarh)
$N=n+5$

$$
\begin{aligned}
& L_{0}^{n}=\text { Rencfit - Premius } \\
& \int=\underbrace{P V F B_{0}}-P V F P_{0} \\
& =B v^{K+1}-\searrow p \ddot{a}_{k+1} \\
& E\left[L_{0}^{n}\right]=E\left[P V F B_{0}\right]-E\left[P V F P_{0}\right]=0 \Rightarrow \underbrace{E\left[L_{0}\right]=0 \text { and siove fo } P}_{\text {acturaid equivelace }} \text {. } \\
& \text { equivalence princth- } \\
& \text { Set } P: E[P \vee F P \cdot]=E[P V F B .]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
E\left[L_{0}\right]=0 \Rightarrow \sum^{E}\left(P \ddot{a}_{k+1}\right] & =\underbrace{E\left[v^{k+1}\right]}_{A_{x}} \Rightarrow P=\frac{A_{x}^{\prime}}{\dot{a}_{x}} \\
P \ddot{a}_{x} & =A^{2}
\end{aligned} \\
& \ddot{a}_{x} \quad B \text { is other than } 1 \\
& \underset{i=0 \Rightarrow v=1}{E\left[\ddot{a}_{k+n}\right]=\frac{E\left[1+v+\cdots+v^{k+1}\right]}{E[k+1] i f i=0}} \\
& \begin{array}{l}
\underbrace{P \ddot{a}_{x}}_{P\left[P V F P_{x}\right]}=B\left[P V F B_{x}\right] \\
\end{array} \\
& p=B^{\prime} \frac{A_{x}}{\dot{a}_{x}} \\
& \begin{array}{l}
E\left[P \vee F P_{0}\right)=E\left[P \cup P B_{0}\right] \\
A P V\left(F P_{0}\right)=A P V\left(F B_{0}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& L_{0}=P V F B_{0}-P V F P_{0} \\
& {\underset{v}{k+1}}^{\alpha^{k}}-P \ddot{a}_{k+1} \\
& P=A_{x} \mid \ddot{a}_{x} \Leftrightarrow E\left[L_{0}\right]=0 \\
& \operatorname{Var}\left(L_{0}\right)=\operatorname{Var}(\underbrace{v^{k+1}-P \not a_{k+1}}_{v^{k+1}-P\left(\frac{1-v^{k+1}}{d}\right)}) \\
& \begin{array}{l}
\underbrace{\operatorname{cov}\left(\nu^{k+1}, \ddot{a}_{k \neq 1}\right) \neq 0}_{\text {if } B \neq 1,} \\
=\left(B+\frac{p}{d}\right)^{2}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right]
\end{array} \\
& =\operatorname{Var}(\underbrace{\left(1+\frac{p}{d}\right.}) v^{K+1}-\frac{P}{d}) \\
& =\underbrace{\prime}+\frac{p}{d})^{2} \frac{\operatorname{Var}\left(v^{k+1}\right)}{\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right]}= \\
& \text { fully disent } W L \text { of } B=1 \\
& P=B \frac{1}{A_{x}} \ddot{a}_{x}
\end{aligned}
$$

B-beneft fully doscrite WL

$$
\begin{aligned}
& L_{0}=B v^{k+1}-P \ddot{a}_{k+1} \\
& E\left[L_{0}\right]=0
\end{aligned}
$$

$$
P=B \frac{A_{x}}{a_{x}}
$$

VIF'

$$
\begin{aligned}
E\left[L_{0}\right] & =0 \\
\operatorname{Var}\left(L_{0}\right) & =B^{2}(\underbrace{1+\frac{P_{x}}{d}})^{2}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& B=1 \\
& P=\frac{P_{x}^{\prime}}{I}=\frac{A_{x}}{\ddot{a}_{x}}
\end{aligned}
$$

$$
\begin{aligned}
& P_{x}=\frac{A_{x}}{\hat{a}_{x}}, \quad \text { in termo of insmans } \\
& A_{x}=1-d_{x} \dot{a}_{x} \\
& P_{x}=\frac{1}{\hat{a}_{x}}-d^{\prime \prime}\left(\frac{\frac{d A_{x}}{1-A_{x}}}{d x}\right)^{2}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right] \\
& P_{x}=\underbrace{\frac{A_{x}}{1-A_{x}}}=\frac{d A_{x}}{1-A_{x}}
\end{aligned}=B^{2} \frac{\frac{1}{\left(1-A_{x}\right)^{2}}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right]}{\frac{{ }^{2} A_{x}-\left(A_{x}\right)^{2}}{\left(1-A_{x}\right)^{2}}} \quad \text { V/F/ }
$$

Probability of a positive loss at issus.

$$
\begin{aligned}
& \left(\begin{array}{l}
\operatorname{Pr}\left(v^{k+1} \gg a\right) \\
=\operatorname{Pr}\left[K<\ddot{G}_{k+\pi} \gg a\right] \\
\\
=\operatorname{Pr}[K \gg \mid k \cdot a]
\end{array}\right)
\end{aligned}
$$

$B=1$

$$
\left(\frac{1-v^{k+1}}{d}\right)
$$

$$
\Rightarrow\left(1+\frac{p}{d}\right) v^{k+1}-\frac{p}{d}>0
$$

$$
\Rightarrow V^{k+1}>\frac{P / d}{1+P / d}
$$

$$
\Rightarrow(K+1) \log _{-\delta}^{v}>\log \left(\frac{P / d}{1+P / d}\right)
$$

(is dismal.

$$
\operatorname{Pr}\left[L_{0}>0\right)=\operatorname{Pr}[K<\underbrace{-\frac{1}{\delta} \log \left(\frac{P / d}{1+P / d}\right)-1}_{a}]=\operatorname{Pr}[K<a]
$$

Chapter summary

- Contract premiums
- net premiums
- gross (expense-loaded) premiums
- Present value of future loss random variable

- Premium principles
- the equivalence principle (or actuarial equivalence principle)
- portfolio percentile premiums .
- Return of premium policies
- Chapter 6 of Dickson, et al.

Net random future loss

- An insurance contract is an agreement between two parties:
- the insurer agrees to pay for insurance benefits;
- in exchange for insurance premiums to be paid by the insured.
- Denote by PVFB_{0} the present value, at time of issue, of future benefits to be paid by the insurer.
- Denote by PVFP_{0} the present value, at time of issue, of future premiums to be paid by the insured.
- The insurer's net random future loss is defined by

$$
L_{0}^{n}=\mathrm{PVFB}_{0}-\mathrm{PVFP}_{0}
$$

- Note: this is also called the present value of future loss random variable (in the book), and if no confusion, we may simply write this as L_{0}.

The principle of equivalence

- The net premium, generically denoted by P, may be determined according to the principle of equivalence by setting

$$
\mathrm{E}\left[L_{0}^{n}\right]=0 .
$$

- The expected value of the insurer's net random future loss is zero.
- This is then equivalent to setting $\mathrm{E}\left[\mathrm{PVFB}_{0}\right]=\mathrm{E}\left[\mathrm{PVFP}_{0}\right]$. In other words, at issue, we have

$$
\mathrm{APV}(\text { Future Premiums })=\mathrm{APV}(\text { Future Benefits }) \text {. }
$$

An illustration

Consider an n-year endowment policy which pays B dollars at the end of the year of death or at maturity, issued to a life with exact age x. Net premium of P is paid at the beginning of each year throughout the policy term.

- If we denote the curtate future lifetime of (x) by $K=K_{x}$, then the net random future loss can be expressed as

$$
L_{0}^{n}=B v^{\min (K+1, n)}-P \ddot{a} \overline{\min (K+1, n)} .
$$

- The expected value of the net random future loss is

$$
\begin{aligned}
\mathrm{E}\left[L_{0}^{n}\right] & =B \mathrm{E}\left[v^{\min (K+1, n)}\right]-P \mathrm{E}\left[\ddot{a}_{\overline{\min (K+1, n)}}\right] \\
& =B A_{x: \bar{n}}-P \ddot{a}_{x: \bar{n}} .
\end{aligned}
$$

n-year endowment of $B=$ bencfit . isinut $h(x)$ annud preminas at boy.

$$
\begin{aligned}
\text { loss-at-issue }=L_{0}^{n} & =L_{0}=P V F B_{0}^{0}-P V F P_{0}^{2} \\
& =B V^{\min (K H 1, n)}-P \ddot{a}_{\min (K+1, n)}^{n}
\end{aligned}
$$

Equivabou protaple $\frac{\operatorname{APV}(P P)}{L .}=\operatorname{APV}(P V F B$.

$$
P=\frac{B A_{x: n}}{\ddot{a}_{x: n}}
$$

$$
\begin{aligned}
& \operatorname{Var}\left(L_{0}\right)=B^{2}\left(1+\frac{P}{d}\right)^{2}\left[{ }^{2} A_{x: n}-\left(A_{x: n}\right)^{2}\right] \\
& \begin{array}{c}
A_{x: n}=1-d \ddot{a}_{x: n} \\
\ddot{a}_{x: n}=\frac{1-A_{x: n}}{d}
\end{array} \\
& =B^{2} \cdot \frac{{ }^{2} A_{x: n}-\left(A_{x: n}\right)^{2}}{\left(1-A_{x: n}\right)^{2}}
\end{aligned}
$$

An illustration - continued

- By the principle of equivalence, $\mathrm{E}\left[L_{0}^{n}\right]=0$, ve then have

$$
P=B \frac{\hat{A}_{x: \bar{n}}}{\ddot{a}_{x: \bar{n}}}
$$

- Rewriting the net random future loss as

$$
L_{0}^{n}=\left(B+\frac{P}{d}\right) v^{\min (K+1, n)}-\frac{P}{d}
$$

we can find expression for the variance:

$$
\operatorname{Var}\left[L_{0}^{n}\right]=\left(B+\frac{P}{d}\right)^{2}\left[{ }^{2} A_{x: \bar{n} \mid}-\left(A_{x: \bar{n}}\right)^{2}\right]
$$

- One can also show that this simplifies to

$$
\left.\operatorname{Var}\left[L_{0}^{n}\right]=B^{2}\right)^{2} \frac{A_{x: \bar{n}}-\left(A_{x: \bar{n}}\right)^{2}}{\left(1-A_{x: \bar{n} \mid}\right)^{2}} .
$$

Some general principles

Note the following general principles when calculating premiums:
/ For (discrete) premiums, the first prémium is usually assumed to be made immediately at issue.'

- Insurance benefit may have expiration or maturity:
- in which case, it is implied that there are no premiums to be paid beyond expiration or maturity.
- however, it is possible that premiums are to be paid for lesser period than expiration or maturity. In this case, it will be explicitly stated.

Fully discrete annual premiums - whole life insurance

Consider the case of a fully discrete whole life insurance where benefit of $\$ 1$ is paid at the end of the year of death with level annual premiums.
The net annual premium is denoted by P_{x} so that the net random future loss is

$$
L_{0}=v^{K+1}-P_{x} \ddot{a}_{\overline{K+1}}, \text { for } K=0,1,2, \ldots
$$

By the principle of equivalence, we have

$$
P_{x}=\frac{\mathrm{E}\left[v^{K+1}\right]}{\mathrm{E}\left[\ddot{a}_{\overline{K+1}}\right]}=\frac{A_{x}}{\ddot{a}_{x}} .
$$

The variance of the net random future loss is

$$
\operatorname{Var}\left[L_{0}\right]=\frac{{ }^{2} A_{x}-\left(A_{x}\right)^{2}}{\left(d \ddot{a}_{x}\right)^{2}}=\frac{{ }^{2} A_{x}-\left(A_{x}\right)^{2}}{\left(1-A_{x}\right)^{2}}
$$

Other expressions

You can express the net annual premiums:

- in terms of annuity functions

$$
P_{x}=\frac{1-d \ddot{a}_{x}}{\ddot{a}_{x}}=\frac{1}{\ddot{a}_{x}}-d
$$

- in terms of insurance functions

$$
P_{x}=\frac{A_{x}}{\left(1-A_{x}\right) / d}=\frac{d A_{x}}{1-A_{x}}
$$

Whole life insurance with h premium payments

Consider the same situation where now this time there are only h premium payments.

- The net random future loss in this case can be expressed as

$$
L_{0}=v^{K+1}-P \times \begin{cases}\ddot{a}_{\overline{K+1}}, & \text { for } K=0,1, \ldots, h-1 \\ \ddot{a}_{\bar{h}}, & \text { for } K=h, h+1, \ldots\end{cases}
$$

- Applying the principle of equivalence, we have

$$
P=\frac{A_{x}}{\ddot{a}_{x: \bar{h}}} .
$$

Illustrative example 1

Consider a special endowment policy issued to (45). You are given:

- Benefit of $\$ 10,000$ is paid at the end of the year of death, if death occurs before 20 years.
- Benefit of $\$ 20,000$ is paid at the end of 20 years if the insured is then alive.
- Level annual premiums \underline{P} are paid at the beginning of each year for 10 years and nothing thereafter.

$$
\text { SALT } i=5 \text { ? }
$$

- Mortality follows the Survival Ultimate Life Table with $i=0.05$.
Calculate P according to the equivalence principle. $\quad P=921.10$

$$
\begin{aligned}
& E\left[L_{0}\right]=0 \Rightarrow \underbrace{A P V\left(F P_{0}\right)}_{\rho}=\underbrace{A P V(F B .)}_{\text {term }+ \text { pure }} \\
& 10,000 \\
& 20,000 \\
& \ddot{a}_{45}=17.8162 \\
& { }_{10} E_{45}=.60615 \\
& \ddot{a}_{55}=16.0599 \\
& \ddot{a}_{45 \cdot 101}=\ddot{a}_{45}^{\prime}-{ }_{10} E_{45}^{\prime} \hat{a}_{55}^{\prime} \\
& \text { Solve for }
\end{aligned}
$$

Benefits varying, Premiums vary
20-year term payeshe at the end of year of death:
is sue
$\rightarrow 10$ in the first 5 years
$\rightarrow 25$ the fillowns 15 years
sur

$\rightarrow P$ in the first 5 years
$\rightarrow 2 P$ after that..

$$
\begin{aligned}
& \text { Calalete P. } \\
& E[L .]=0 \Rightarrow \underbrace{A P V(F P)}=A P V\left(F B_{0}\right) \\
& P \ddot{a}_{45}+P_{5}^{\prime} E_{45} \ddot{a}_{50}-{ }_{25} P_{20}^{\prime} E_{45} \ddot{a}_{65}={ }_{10} A_{45}+15{ }_{5} E_{45} A_{50}-25_{20} E_{45} A_{65} \\
& P=\frac{10 A_{45}+15{ }_{5} E_{45} A_{50}-25{ }_{25} E_{45} A_{65}}{\ddot{a}_{45}+{ }_{55} E_{45} \ddot{a}_{50}-2{ }_{20} E_{45} \ddot{G}_{65}}, \begin{array}{c}
\text { (try to toluate, } \\
\text { using table!) }
\end{array}
\end{aligned}
$$

Chap3 L/4 Th4 shes. (1)
$4 \mathrm{LI}^{5}$
${ }_{5} \mathrm{LA}^{5}$
$n\left(m^{n}\right)^{n}$,

6 - Prm
Caloldr

,
(1)

SULT-
11 mastrin $\omega \sigma^{2} 7$
T. 46
equivalince prinaple L_{0}^{n} loss-at-issue (met)

$$
\begin{aligned}
& E\left[L_{\text {n. }} .\right]=0 \\
& E\left[P \vee F B_{0}^{L}-P \vee F^{\prime} P_{0}\right]=0 \\
& E\left[P \vee F B_{0}\right]=\frac{E\left[P \vee F P C_{0}\right]}{A P \vee\left(F B_{1}\right)} \\
& \operatorname{ApV}\left(F P_{0}\right)=A P V\left(F B_{0}\right)
\end{aligned}
$$

(disoct) Whik life to (x)

$$
\begin{aligned}
& L_{0}=\text { PVFB. }- \text { PVFP. } \\
& v^{k+1}-P \ddot{a}_{k+1} \Rightarrow P \ddot{a}_{x}=A_{x} \\
& P=\frac{A_{x}^{\prime}}{\ddot{a}_{x}}
\end{aligned}
$$

Whole life with fewer premiums

$$
\begin{array}{r}
L_{0}=P V F B_{0}-P V F P_{0} \\
l_{0}^{k+1}-P \ddot{a} \overline{\min (k+1, h)} \\
E\left[L_{0}\right]=E\left[V^{k+1}-P \ddot{a}_{\min (k+1, h)}\right] \\
A_{x}-P \ddot{a}_{x: h}=0 \\
P=\frac{A_{x}}{\ddot{a}_{x} \cdot h}
\end{array}
$$

$$
E\left[L .0=E\left[v^{k+1}-P \ddot{a}_{\min (k+1, h)}^{k+1}\right]=0 \int \begin{cases}\ddot{a}_{k+1}, & k<h \\ \ddot{a}_{\text {ain }}, & k \geqslant h\end{cases}\right.
$$

SOA-type question

$$
\begin{aligned}
& \operatorname{APV}(F P)=\operatorname{APV}\left(F D_{1}\right) \\
& d=1-v \\
& 2 \text { years } \quad v=1-d \\
&=.95
\end{aligned}
$$

Two actuaries use the same mortality table to price a fully discrete two-year endowment insurance of 1,000 on (x). You are given:

- Kevin calculates non-level benefit premiums of 608 for the first year, 'and 350 for the second year.
- Kira calculates level annual benefit premiums of π.
- $d=0.05^{\prime} \quad$ Kevin: ${ }^{608}+350 p_{x} \cdot v^{\prime}=1000 A_{x}: 7$

Calculate π.

$$
\begin{aligned}
& \text { Kra: } \underbrace{\pi+\pi p_{x} \cdot v^{\prime}}=1000 A_{x}: \pi / \\
& \pi\left(1+v_{x}\right)=608+350 v p_{x} \\
& \pi=\frac{608+350(.95) p_{x}^{\prime}}{1+.95 p_{x}}=\frac{608+35(.55) \cdot \frac{.835}{98}}{1+.95(.855 / 85)} \\
& \text { ECON }
\end{aligned}
$$

Derice p_{x} from Keuris $608+350 v p_{x}=1000 \underbrace{A_{x}, 27}_{l}(.95)^{2}$

$$
\begin{aligned}
& 608-1000 v=\hat{P}_{x}\left[-1000 v+1000 v^{2}-350 v\right] \\
& P_{x}=\frac{608-1000 \mathrm{~V}}{\frac{-1000 \mathrm{v}+1000 \mathrm{v}^{2}-350 \mathrm{~V}}{(.835 / .95)}}
\end{aligned}
$$

Illustrative example 2

An insurance company issues a 15-year deferred life annuity contract to (50). You are given:

F Level monthly premiums o P are paid during the deferred period.
p The annuity benefit of $\$ 25,000$ is to be paid at the beginning of each anmul year the insured is alive, starting when he reaches the age of 65 .

- Mortality follows the Survival Ultimate Life Table with $i=0.05 .^{\prime}$
- Mortality between integral ages follow the Uniform Distribution of Death (UDD) assumption.
(1) Write down an expression for the net future loss, at issue, random variable.
(2) Calculate the amount of P.
(3) If an additional benefit $\$ \$ 10,000$; to be paid at the moment of death during the deferred period, how much will the increase in the monthly premium be?
(i) loss at issuc

$$
\begin{aligned}
& L_{0}=\text { PVFB. - PVFP. } \\
& \begin{array}{l}
=\text { PVFB. - PVFP0 } \\
= \begin{cases}0, & k<15 \\
2500015 \mid \ddot{a}_{k+1,} \\
k \geqslant 15\end{cases}
\end{array} \\
& \text { SULT } i=.05
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \underbrace{A P V(F P .)}_{{ }_{12} P \ddot{\theta}_{50}^{(12)}: 151}=\underbrace{A P V(F B .)}_{1} \\
& { }_{10} E_{50} \cdot{ }_{5} E_{60} \\
& \begin{array}{cc}
1 \\
.60182 & .76687
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { UDD } \ddot{a}_{x}^{(m)} \approx \alpha(m) \ddot{a}_{x}-\beta(m)
\end{aligned}
$$

$$
\begin{aligned}
& { }_{12}{ }^{2} \ddot{P}_{50}^{(12)}: 151=25000 \quad{ }_{15} E_{50} \ddot{G}_{15} \\
& \Rightarrow P=\frac{25000(.60182 \times .76687) 13.5498}{12 * 10.52157}=\frac{1,238.177}{\frac{\text { monthly }}{}}
\end{aligned}
$$

(3)

$$
i=.05
$$

$$
\delta=107^{(1.05)}
$$

$$
\Rightarrow P=1238.177 \quad \text { without }
$$

$$
\Delta P=20.76 \text { monthly - }
$$

$$
\begin{aligned}
& A P V\left(F P_{0}\right)=A P V(F B .) \\
& { }_{12}{\stackrel{\swarrow}{P} \ddot{a}_{50: 15}^{(12)}}^{25000{ }_{151} \ddot{a}_{65}}+{ }_{10000}^{\overbrace{50: 157}^{\bar{A}_{1}}} \\
& P=1258.137 \text { (verify) } \begin{array}{l}
\text { with } \\
\text { insurance }
\end{array} \\
& \underbrace{\substack{A_{50}-15 E_{50} \\
.1831}}_{=.02557736}
\end{aligned}
$$

Different possible combinations

Premium payment	Benefit payment
annually	at the end of the year of death at the end of the $\frac{1}{m}$ th year of death at the moment of death -
m-thly of the year	at the end of the year of death at the end of the $\frac{1}{m}$ th year of death at the moment of death
continuously	at the end of the year of death at the end of the $\frac{1}{m}$ th year of death at the moment of death
$\operatorname{APV}\left(F P_{0}\right)$	$A P V(F B)^{\text {a }}$ (equivalesu principe.

fully continnous whole lifs,

$$
\begin{aligned}
& \text { premiuns' } \\
& L_{0}=P V E B_{0}-P V F P_{0} \\
& \begin{array}{l}
V^{\top}-P \bar{a}_{\tau} \Rightarrow E\left[L_{0}\right]=0 \Rightarrow P=\left(\frac{\widehat{A_{x}}}{\bar{a}_{x}}\right)
\end{array} \\
& v^{\top}-P\left(\frac{1-v^{\top}}{\delta}\right)=v^{\top}(\underbrace{1+\frac{p}{\delta}})-\frac{p}{\delta} \\
& \operatorname{Var}\left(L_{0}\right)=\underbrace{\left(1+\frac{P^{\delta}}{\delta}\right)^{2}} \underset{\left[{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}\right]}{\operatorname{var}\left(v^{\top}\right)}=\ldots . .=\frac{{ }^{2} A_{x}-\left(\bar{A}_{x}\right)^{2}}{\left(1-\bar{A}_{x}\right)^{2}} \\
& \bar{A}_{x}=1-\delta \bar{a}_{x}
\end{aligned}
$$

Fully continuous premiums - whole life insurance

Consider a fully continuous level annual premiums for a unit whole life insurance payable immediately upon death of (x).

- The insurer's net random future loss is expressed as
- By the principle of equivalence,

$$
P=\frac{\bar{A}_{x}}{\bar{a}_{x}}=\frac{1}{\bar{a}_{x}}-\delta=\frac{\delta \bar{A}_{x}}{1-\bar{A}_{x}}
$$

- The variance of the insurer's net random future loss can be expressed as

$$
\begin{aligned}
\operatorname{Var}\left[L_{0}\right] & =[1+(P / \delta)]^{2}\left[{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}\right] \\
& =\frac{{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}}{\left(\delta \bar{a}_{x}\right)^{2}}=\frac{{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}}{\left(1-\bar{A}_{x}\right)^{2}}
\end{aligned}
$$

$Q_{H \|}$
$t P_{x}=e^{-\mu t}$
$\ddot{a}_{40}=\underbrace{\ddot{a}_{40}: 25}+\underbrace{{ }_{2} E_{40}}_{25} \ddot{a}_{65} \xrightarrow{\text { Sut } \Rightarrow 13.5498}$
CPT
$\sum_{k=0}^{24} v_{k} \rho_{40}$

$$
\sum_{k=0}^{24}\left(\frac{e^{-.004}}{1.1}\right)^{k} e^{-.004 k}=\frac{1-\left(\frac{e^{-.004}}{1.1}\right)^{25}}{1-\left(\frac{e^{-.004}}{1.1}\right)}=9.694359
$$

$$
=10.82594
$$

QHf 10 Wol howne of thre terms

$$
\begin{aligned}
& 60 \stackrel{l_{\underline{x}}}{\mu_{\underline{x}}} \quad i=.05 \\
& 60 \\
& 60 \stackrel{l_{\underline{x}}}{\mu_{\underline{x}}} \quad i=.05 \\
& 63 \\
& 2.771183
\end{aligned}
$$

$$
\begin{aligned}
& m=12
\end{aligned}
$$

$$
\begin{aligned}
& { }_{3} E_{60}=v^{3}{ }_{3} P_{60}=\left(\frac{1}{1.05}\right)^{3} \frac{l_{63}}{l_{0}-1010}=.8788332
\end{aligned}
$$

$$
\hat{a}_{x}^{(n)} \approx \ddot{a}_{x}-\frac{m-1}{2 m}-\frac{m^{2}-1}{12 m^{2}}\left(\mu_{x}+\delta\right)
$$

$$
\begin{aligned}
& E\left[L_{0}\right]=E\left[v^{\top}\right]-P E\left[\bar{a}_{\bar{T}}\right] \\
& \overline{\bar{A}_{x}}-P \bar{a}_{x}=0 \\
& \operatorname{Var}\left(L_{.}\right)=\operatorname{Var}\left(v^{v^{\top}-\dot{P} \frac{1-v^{\top}}{\delta}}\right) \text { constar } \\
& \left.=\operatorname{Var}\left(\left(1+\frac{P}{\delta}\right) v^{\top}-\frac{P}{\delta}\right)\right) \quad P=\bar{A}_{x} / \bar{a}_{x} \\
& p=\bar{A}_{x} / \hat{a}_{x} \quad \begin{array}{l}
\text { spres } \\
\text { expecties } \\
\text { lifetione }
\end{array} \\
& \left.=\left(1+\frac{p}{\delta}\right)^{2} \operatorname{Var}\left(v^{\top}\right),{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}\right] \quad \frac{{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}}{\left(1-\bar{A}_{x}\right)^{2}}, \\
& \begin{array}{l}
\text { if } T=0 \\
\bar{G}_{x}=E\left[T_{x}\right]
\end{array} \\
& \text { sprean } \\
& \text { expectie } \\
& \text { lifetione }
\end{aligned}
$$

A simple illustration relations Ats a

$$
\begin{gathered}
\bar{A}_{x}=\frac{\mu}{\mu+\delta}, \quad \bar{a}_{x}=\frac{1}{\mu+\delta} \\
\bar{A}_{x}=1-\delta \bar{a}_{x}
\end{gathered}
$$

For a fully continuous whole life insurance of \$1. you are given:

- Mortality follows a constant force of $\mu=0.04$.

$$
\begin{aligned}
& \frac{\bar{A}_{x}}{\bar{a}_{x}}=\mu_{.}^{\prime} \\
& r_{=}=.08
\end{aligned}
$$

- Interest is at a constant force $\delta=0.08$.
- L_{0} is the loss-at-issue random variable with the benefit premium calculated based on the equivalence principle.

$$
\bar{A}_{x}=\frac{4}{12}=\frac{1}{3}
$$

Calculate the annual benefit premium and $\operatorname{Var}\left[L_{0}\right]$.

$$
\operatorname{Var}\left(L_{0}\right)=\frac{\left({ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}\right]}{\left(1-\bar{A}_{x}\right)^{2}}=\frac{\frac{1}{5}-\left(\frac{1}{3}\right)^{2}}{\left(1-\frac{1}{3}\right)^{2}}=\frac{1}{5}=0.20
$$

Published SOA question \#14

$$
{ }^{2} \breve{A}_{x}=\frac{\mu}{\mu+2 \delta}=\frac{.03}{.03+28}=.20,
$$

For a fully continuous whole life insurance of $\$ 1$ on (x), you are given: $=\frac{1}{3}$

- The forces of mortality and interest are constant.
- ${ }^{2} \bar{A}_{x}=0.20$

$$
P=\mu=.03
$$

- The benefit premium is 0.03 .

benefit

- L_{0} is the loss-at-issue random variable based on the benefit premium.

Calculate $\operatorname{Var}\left[L_{0}\right]$.

$$
\frac{{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}}{\left(1-\bar{A}_{x}\right)^{2}}=\frac{.20-\left(\frac{1}{3}\right)^{2}}{\left(1-\frac{1}{3}\right)^{2}}=0.20
$$

Endowment insurance

Consider an n-year endowment insurance with benefit of $\$ 1$:

- The net random future loss is

$$
L= \begin{cases}v^{T}-P \bar{a}_{\bar{T}}^{\prime}, & T \leq n \\ v^{n^{\prime}}-P \bar{a}_{\bar{n}}^{\prime}, & T>n\end{cases}
$$

- Net annual premium formulas:

$$
P=\frac{\bar{A}_{x: \bar{n}}}{\bar{a}_{x: \bar{n} \mid}}=\frac{1}{\bar{a}_{x: \bar{n} \mid}}-\delta=\frac{\delta \bar{A}_{x: \bar{n}}}{1-\bar{A}_{x: \bar{n}}}
$$

$$
{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}
$$

$$
\overline{\left(1-\bar{A}_{x}\right)^{2}}
$$

- The variance of the net random future loss:

$$
\begin{aligned}
\operatorname{Var}\left[L_{0}\right] & =[1+(P / \delta)]^{2}\left[{ }^{2} \bar{A}_{x: \bar{n}}-\left(\bar{A}_{x: \bar{n}}\right)^{2}\right] \\
& =\frac{{ }^{2} \bar{A}_{x: \bar{n}}-\left(\bar{A}_{x: \bar{n}}\right)^{2}}{\left(\delta \bar{a}_{x: \bar{n}}\right)^{2}}=\frac{{ }^{2} \bar{A}_{x: \bar{n}}-\left(\bar{A}_{x: \bar{n}}\right)^{2}}{\left(1-\bar{A}_{x: \bar{n}}\right)^{2}}
\end{aligned}
$$

Illustrative example 3

$$
\frac{{ }^{2} \bar{A}_{x: n}^{\prime}-\left(\bar{A}_{x: n}\right)^{2}}{\left(1-\bar{A}_{x: n}\right)^{2}}=\frac{a-5198}{(1-.5158)^{2}}=.4631556
$$

For a fully continuous n-year endowment insurance of $\$ 1$ issued to (x), you are given:

- Z is the present value random variable of the benefit for this insurance.

- Level annual premiums are paid on this insurance, determined according to the equivalence principle.
Calculate $\operatorname{Var}\left[L_{0}\right]$, where L_{0} is the net random future loss at issue.

For a fully continuous while life of 1 on (x) :
equickas $\Leftarrow, \quad \pi=$ benefit premium
prongs. $1, L_{0}=$ loss at issue with preminger $\pi \rightarrow L_{0}=v^{\top}-\mathbb{\Pi} \bar{a}_{T}$

- $L_{0}^{*}=$ loss at issue with premium $1.25 \pi=\left(1+\frac{\pi}{\delta}\right) v^{\top}-\frac{\pi}{\delta}$

$$
\begin{aligned}
\bar{A}_{x} & =1-\delta \bar{a}_{x} \leftarrow \cdot \\
& =1-.08(5) \cdot \\
& =1-.4 \\
& =.6
\end{aligned}
$$

Calculate $E\left[L_{0}^{*}\right]+\sqrt{\operatorname{Var}\left(L_{0}^{*}\right)}$.

$$
\begin{align*}
L_{0}^{*} & =\left(\frac{\left.1+\frac{1.25 \pi}{\delta}\right) v^{\top}-\frac{1.25 \pi}{\delta}}{E\left[L_{0}\right]}=0\right. \text { e.p. } \\
\pi & =\bar{A}_{x} / \bar{G}_{x} \\
& =.60 / 5.0=.12
\end{align*}
$$

$$
\begin{aligned}
& E\left[L_{0}^{\alpha}\right]=E\left[v^{\top}-1.25 \pi \bar{a}_{\bar{T}}\right]={\underset{A}{x}}_{\bar{A}_{x}}-1.25 \pi \bar{a}_{x}=-.15 \\
& \operatorname{Var}\left[L_{0}^{e}\right]=\left(1+\frac{1.25 \pi}{\delta}\right)^{2}[\underbrace{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Var}\left[L_{0}\right]=\left(1+\frac{\pi}{6} j\left[{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{-}\right]=.562 J, \hat{}\right) \text {, } \\
& \operatorname{Var}\left[L_{1}^{x}\right]=\left(1+\frac{1.25 \pi}{\delta}\right)^{2}\left[{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}\right]=b \\
& \pi=.12 \\
& \delta=.08 \\
& b=\frac{\left(1+\frac{1.25(0.12)}{.08}\right)^{2}}{\left(1+\frac{.12}{.08}\right)^{2}} \times .5625
\end{aligned}
$$

study this. again

Illustrative example 4

$$
x=30
$$

For a fully discrete whole life insurance of 100 on (30), you are given:

- π denotes the annual premium and $L_{0}(\pi)$ denotes the net random future loss-at-issue random variable for this policy.
discrete
- Mortality follows the Survival Ultimate Life Table with $i=0.05$.
Calculate the smallest, premium π^{*}, such that the probability is less than 2\% that the loss $L_{0}\left(\pi^{*}\right)$ is positive. 0.25

$$
\operatorname{Pr}[\underbrace{}_{0}>0]<.255 L_{0}=\underbrace{100 \mathrm{~V}^{K+1}-\pi^{*} a_{k+1}}_{K=?}>0
$$

$$
\begin{aligned}
& L_{0}>0 \Leftrightarrow \underbrace{100 v^{k+1}-\pi^{2} \ddot{a}_{k+1}}_{\frac{1-v^{k+1}}{d}}>0 \\
& i=.05 \\
& d=.05 / 1.05 \\
& \operatorname{Pr}\left[L_{1}>0\right]=\operatorname{Pr}[K<a] \\
& \Leftrightarrow\left(100+\frac{\pi^{*}}{d}\right)^{k+1}-\frac{\pi^{*}}{d}>0 \\
& =\underbrace{1-\operatorname{Pr}[K \geqslant a]}_{<.25} \\
& \Leftrightarrow \quad v^{k+1}>\frac{\pi^{\alpha} / d}{100+\pi^{\alpha} / d} \\
& \Leftrightarrow(K+1){\underset{-}{\log } v}^{\left(\log _{-\delta}\right.}>\log \left(\frac{\pi^{x} / d}{100+\pi^{x} / 4}\right) \\
& \begin{array}{l}
\operatorname{Pr}[k \geqslant 6] \geqslant .75 \\
\underbrace{\operatorname{Pr}\left[K_{x} \geqslant 6\right.}=\frac{l_{30+a}>.75}{l_{30}}
\end{array} \\
& \left.\Leftrightarrow \quad k<a=\frac{\log \left(\frac{\pi^{k} / d}{100+\pi^{k} / d}\right)-1}{-\delta}\right) \\
& \ell_{30+a}>75 \ell_{30} \\
& \text { 99727.3 } \\
& \text { suLT } \\
& l_{\underline{l}+a}>74795.48
\end{aligned}
$$

Solve for π from $a=50$

$$
\begin{array}{ll}
a=\frac{\log \frac{\pi^{x} / d}{100+\pi^{*} / d}-1=50}{-\delta} & \begin{array}{ll}
i=.05 \\
\delta=1.01 .05
\end{array} \\
\frac{d=.05 / 1.05}{100+\pi^{x} / d}=e^{5 i(-\delta)} & \text { net loss } \quad L_{0}^{n}
\end{array}
$$

net loss L_{0}^{n}

$$
\pi^{*}=0.4313019
$$

$$
L_{0}^{g}=P V F B-P V F P+\underbrace{P V F E}_{\text {add expenses }}
$$

Types of life insurance contract expenses

- Investment-related expenses (e.g. analysis, cost of buying, selling, servicing)
- Insurance-related expenses:
- - acquisition (agents' commission, underwriting, preparing new records)
- maintenance (premium collection, policyholder correspondence)
- - general (research, actuarial, accounting, taxes)
- - settlement (claim investigation, legal defense, disbursement)

First year vs. renewal expenses

- Most life insurance contracts incur large losses in the first year because of large first year expenses:
- agents' commission -
- preparing new policies, contracts ${ }^{\prime}$
- records administration
- These large losses are hopefully recovered in later years.
- How then do these first year expenses spread over the policy life?
- Anything not first year expense is called renewal expense (used for maintaining and continuing the policy).
firstyear vs renewal year \downarrow
$\%$ of preminm
$\%$ of insuancu bencfit
fixed expense -
net premium \Rightarrow bencfit orl
$\underbrace{}_{\text {gross premiun }} \rightarrow$ bencfit + expenses
expene-loadel preximan.

Gross premium calculations

- Treat expenses as if they are a part of benefits. The gross random future loss at issue is defined by

$$
\begin{aligned}
& \text { sue is defined by } \\
& L_{0}^{g}=\mathrm{PVFB}_{0}+\mathrm{PVFE}_{0}-\mathrm{PVFP}_{0} \text { expenses- }
\end{aligned}
$$

where PVFE_{0} is the present value random variable associated with future expenses incurred by the insurer.

- The gross premium, generically denoted by G, may be determined according to the principle of equivalence by setting

$$
\mathrm{E}\left[L_{0}^{g}\right]=0 . \Rightarrow \text { same idea }
$$

- This is equivalent to setting $\underline{E\left[\mathrm{PVFB}_{0}\right]}+\mathrm{E}\left[\mathrm{PVFE}_{0}\right]=\mathrm{E}\left[\mathrm{PVFP}_{0}\right]$. In other words, at issue, we have

$$
\underbrace{\mathrm{APV}\left(\mathrm{FP}_{0}\right)}=\underbrace{\mathrm{APV}\left(\mathrm{FB}_{0}\right)}+\underbrace{\mathrm{APV}\left(\mathrm{FE}_{0}\right)} .
$$

Consider where expenses are final at e^{\prime}, same whey year fully deserts whole life.
$G=$ gross annual premium

$$
e=\text { same coach year }
$$

$$
B=\text { berefil }=1
$$

$A P F P_{0}=A V F D_{0}+\triangle V F E_{0}$

$$
\ddot{G}_{x}=1 \cdot A_{x}+e \ddot{a}_{x}
$$

$$
\begin{aligned}
& \Gamma_{G-P}^{\text {expense }} \text { lockers, } \\
& \Rightarrow G=P+e \\
&
\end{aligned}
$$

$$
G=\frac{A_{x}+e \ddot{a}_{x}}{\ddot{a}_{x}}=\underbrace{\frac{A_{x}}{\ddot{a}_{x}}}_{p=\text { netannul } p=\sim}+e \Rightarrow G=P+e
$$

fully discrete whole life.

$$
\begin{aligned}
& G \frac{\ddot{q}_{x}}{a_{x}}=\frac{A_{x}}{\ddot{a}_{x}}+\frac{E-e}{\ddot{a}_{x}}+c \frac{\ddot{a_{k}}}{\tilde{a}_{x}}
\end{aligned}
$$

Illustration of gross premium calculation

A 1,000 fully discrete whole life policy issued to (45) with level annual premiums is priced with the following expense assumptions:

In addition, assume that mortality follows the Survival Ultimate Life Table with interest rate $i=0.05$.

Calculate the expense-loaded annual premium.

$$
\begin{aligned}
& A P V F P_{0}=A P V F B_{1}+A P V F E_{0} \\
& G \ddot{a}_{45}=1000 A_{45} t \\
& \%+1000 \quad .5 \times \overline{1000} \ddot{a}_{45}+15 \\
& \text { fixal } \quad 2.5 \ddot{a}_{45}+25 \text {, } \\
& G(\underbrace{.90 a_{45}-.30})=1000 A_{45}+3 a_{45}+3 \\
& G=\frac{1000 A_{45}+3 \ddot{a}_{45}+3}{.90 \ddot{a}_{45}-.30}=\frac{13.22302}{} \\
& A_{45}=.15161 \\
& a_{45}=17.8162 \\
& G-P=13.22-8.51=? ? ?
\end{aligned}
$$

SOA MLC Fall 2015 Question \#7

Cathy purchases a fully discrete whole life insurance policy of 100,000 on her 35th birthday.
You are given:

- The annual gross premium, calculated using the equivalence principle, is 1770.

$$
40 \% \text { entro }+10 \% \text { manct }
$$

- The expenses in policy year 1 are 50% of premium and 200 per policy.
- The expenses in policy years 2 and later are 10% of premium and 50 per policy.
- All expenses are incurred at the beginning of the policy year.
- $i=0.035$

Calculate $\ddot{a}_{35 .}=$?

$$
\begin{aligned}
& A P V F P_{1}=A P V F B_{0}+A P V F E_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{a}_{35}[\underbrace{1770+100000 d-.10(1770)-51}]=100,000+.30(1770)+150 \\
& \hat{a}_{35}=20.48027
\end{aligned}
$$

SOA MLC Fall 2015 Question \#8

$$
L_{0}^{g}=P V F B_{0}+P V F E_{0}-P V F P .
$$

For a fully discrete whole life insurance o 100 on (x), you are given:

- The first year expense is 10% of the gross annual premium.
- Expenses in subsequent years are 5% of the gross annual premium.
- $i=0.04$
- $\ddot{a}_{x}=16.50^{\prime}$
equivalere proving proncizh
- ${ }^{2} A_{x}=0.17$ -

Calculate the variance of the loss at issue random variable.

$$
\begin{aligned}
& L_{0}^{g}=100 \mathrm{~V}^{k+1}+105 G \ddot{a}_{k+1}+.05 G-G_{a_{k+1}} \\
& =100 v^{K+1}-.95 G \ddot{a}_{\frac{1}{k+1}}+.05 G \\
& d=\frac{104}{1.64} \\
& =\left(100+\frac{.95 G}{d}\right) v^{k+1}+\text { constant } \\
& \operatorname{Var}\left[L_{1}^{\delta}\right]=\left(100+\frac{.95 G^{\prime}}{d}\right)^{2}\left[\begin{array}{c}
{ }^{2} A_{x}^{\prime} \\
\left.\underset{0.17}{\alpha}-\left(A_{x}\right)^{2}\right] \\
=1-\frac{.04}{1.04}(16.50)
\end{array}\right. \\
& =908.1414
\end{aligned}
$$

Extend with expense $\operatorname{Pr}\left[L_{1}{ }^{8}>0\right]=$?

- fully discrecte whole life of 100 to (40):
- SULT mortalizy at $i=5 \%$ -

$$
G=1
$$

Calculate $\operatorname{Pr}\left[L_{a}^{\Sigma}>0\right]$.

$$
\begin{aligned}
L_{0}^{g} & =\text { PVFB. }+ \text { PVFE }- \text { PVFP。 } \\
& =100 V^{k+1}+.01 G \ddot{a}_{k+11}^{\prime}+.04 G-G \ddot{a}_{k+1}^{J} \\
& =(\underbrace{\frac{1-v^{k+1}}{d}} \underbrace{100-\frac{.99 G}{d}}) V^{k+1}=\frac{.99 G}{d}+.04 G
\end{aligned}
$$

$$
\begin{gathered}
L_{0}^{g}=\left(100-\frac{199}{d}\right) v^{k+1}-\frac{\frac{.99}{d}+.04}{}>0 \\
v^{k+1}>\frac{\frac{.99}{d}+.04}{100-\frac{.99}{d}}
\end{gathered}
$$

take log

$$
\text { divide by log } v=-\delta
$$

$$
\operatorname{Pr}[k<\ldots]=? ? ? ?
$$

Portfolio percentile premium principle

Suppose insurer issues a portfolio of $(N$ "identical" and "independent" policies where the PV of loss-at-issue for the i-th policy is $L_{0,1}$.
The total portfolio (aggregate) future loss is then defined by

$$
L_{\mathrm{agg}}=L_{0,1}^{\prime}+L_{0,2}^{\prime}+\cdots+L_{0, N}^{\prime}=\sum_{i=1}^{N} L_{0, i} \quad \begin{gathered}
\text { agqngd } \\
\text { Lagg }
\end{gathered}
$$

Its expected value is therefore

$$
\mathrm{E}\left[L_{\mathrm{agg}}^{\checkmark}\right]=\sum_{i=1}^{N} \mathrm{E}^{\prime}\left[L_{0, i}\right]=\mathrm{N} \cdot \mathrm{E}\left[L_{0,1}\right]
$$

and, by "independence", the variance is

$$
\operatorname{Var}\left[L_{\mathrm{agg}}\right]=\sum_{i=1}^{N} \operatorname{Var}\left[L_{0, i}\right] \cdot N \cdot \operatorname{Var}\left[L_{0, i}\right]
$$

Portfolio percentile premium principle

The portfolio percentile premium principle sets the premium P so that there is a probability, say α with $0<\alpha<1$, of a positive gain from the portfolio.
In other words, we set P so that

$$
\operatorname{Pr}\left[L_{\mathrm{agg}}<0\right]=\alpha . \Leftrightarrow \operatorname{Pr}\left[L_{\text {cg }}>\delta\right]=1-\alpha
$$

Note that loss could include expenses. $\quad \alpha=0.95$
Consider Example 6.12 (2nd edition)

$$
\begin{aligned}
& -z_{\alpha}=1.645 \text {. }
\end{aligned}
$$

$$
\Rightarrow \quad Z_{\alpha}=\frac{-E\left[L_{g, g}\right]}{\sqrt{v_{\text {ker }}\left(L_{g g}\right)}}
$$

Illustrative example 5

An insurer sells 100 fully discrete whole life insurance policies of $\$ 1$, each of the same age 45. You are given:

- All policies have independent future lifetimes.
- Mortality follows the Survival Ultimate Life Table with $i=0.05$.

Using the Normal approximation:

$$
\begin{aligned}
\operatorname{Pr}\left[L_{y s}>0\right]=1-\alpha & =(-.95 \\
& =0.05
\end{aligned}
$$

(1) Calculate the annual contract premium according to the portfolio percentile premium principle with $\alpha=0.95 .-\operatorname{Pr}\left[\log _{5}<0\right]=0.95$
(2) Suppose the annual contract premium is set at 0.02 per policy. Determine the smallest number of policies to be sold so that the insurer has at least a 95% probability of a gain from this portfolio of policies.

$$
\begin{aligned}
& L_{0,1}=i^{k+1}-p \ddot{a}_{k+1} \\
& \left(\begin{array}{c}
E\left[L_{0,1}\right]=E\left[V^{K+1}\right]-P E\left[\hat{a}_{k+1}\right]=A_{45}-P \hat{G}_{45}=\underbrace{-15161-P\left(17.81 k_{2}\right)} \\
L \\
=V^{k+1}-P\left(\frac{1-V^{K+1}}{d}\right)=\left(1+\frac{P}{d}\right) V^{K+1}-\frac{P}{d}
\end{array}\right. \\
& \begin{array}{l}
\operatorname{Var}\left[L_{0,1}\right]=\left(1+\frac{p}{d}\right)^{2} \underbrace{\operatorname{Var}^{2}\left(V^{k+1}\right)}_{.01164441} \\
=100 \quad A_{45}^{\left[A_{45}-\left(A_{45}\right)^{2}\right]}
\end{array} \\
& { }^{2} A_{45}=.03463 \\
& A_{45}=.15 \mathrm{k} 1 \\
& \alpha=.95 \\
& Z_{\alpha}=1.645 \\
& \begin{array}{l}
E[\operatorname{Lags})=100(.15161-P(17.8162)) \Rightarrow 1.645=\frac{-100(.15111-P(17.8162))}{\sqrt{100\left(1+\frac{P}{d}\right)^{2}(.0116444 / 4)}} \\
\operatorname{Var}(\operatorname{Lgg})=100\left(1+\frac{P}{d}\right)^{2}(.01164441)
\end{array} \\
& -10\left(.15161-P(17.81621)=1.645\left(1+\frac{P}{\lambda}\right) \sqrt{.01164441}\right) \\
& 10\left(1+\frac{P}{a}\right)(\sqrt{-01164441}) \\
& d=.05 / 1.15
\end{aligned}
$$

$P=.02$ Knom Find $N=$ number of polices

$$
\begin{aligned}
& -\underline{E}\left(L_{\text {ag }}\right)=-N E\left[L_{0,1}\right] \cdot 15161-17.8112 P^{1.02} \\
& \frac{\sqrt{\operatorname{Var}\left[\log _{3}\right)}}{}=\frac{N E\left[L_{0,}\right.}{\sqrt{N \cdot \operatorname{Var}\left[L_{0,1}\right]}} \\
& \left(1+\frac{p}{d}\right)^{.02}(.01164441) \\
& =\frac{-\nu[\nmid .204714]}{\sqrt{N(.02347578)}}=1.645 \\
& (\sqrt{N})^{2}=\left(\frac{1.645(.204714)}{\sqrt{.02347978}}\right)^{2} \Rightarrow \begin{array}{l}
N=1.5161611 \\
\text { at least } 2 \text { p.l.i. }
\end{array}
\end{aligned}
$$

 N

Profit

Consider a fully discrete whole life insurance to (x) with benefit equal to $\$ B$ and annual premiums of $\$ P$. The net loss-at-issue can be expressed as

$$
L_{0}=B v^{K+1}-P \ddot{a}_{\overline{K+1}},
$$

where $K=K_{x}$ is the curtate future lifetime of (x).
The probability that the insurer makes a profit on the policy is

$$
\begin{aligned}
\operatorname{Pr}\left[L_{0}<0\right] & =\operatorname{Pr}\left[B v^{K+1}-P \ddot{a}_{\overline{K+1}}\right] \\
& =\operatorname{Pr}[K>\tau-1]=1-\operatorname{Pr}[K \leq \tau-1] \\
& =1-\operatorname{Pr}[K \leq\lfloor\tau\rfloor-1]=1-{ }_{\lfloor\tau\rfloor} q_{x}={ }_{\lfloor\tau\rfloor} p_{x}
\end{aligned}
$$

where

$$
\tau=-\frac{1}{\delta} \log \left(\frac{P / d}{B+P / d}\right) .
$$

Profit for a singk polvy $\quad \underbrace{P r}\left[L_{0}<0\right]=$ profit \Leftrightarrow negetion lous
fully dsacete while life $B,(x)$

$$
\begin{aligned}
& P=\text { Known } \\
& B=100,000
\end{aligned}
$$

$L_{0}<0 \Leftrightarrow B \cdot v^{k+1}-P \ddot{a}_{k+1}<0$

$$
P=1088.779-
$$

$$
\Leftrightarrow \quad B \cdot v^{k+1}-P\left(\frac{1-v^{k+1}}{d}\right)<0
$$

$$
\Leftrightarrow \quad\left(B+\frac{p}{d}\right) v^{k+1}-\frac{p}{d}<0
$$

suct $i=.05^{\prime}$

$$
\Leftrightarrow \quad-V^{k+1}<\frac{-P / d}{B+P / d}
$$

$$
\delta=\log 1.05
$$

$$
d=.05 / 105
$$

$$
\begin{aligned}
P_{c}[L<0] & \Leftrightarrow P_{r}[K>c] \\
& \Leftrightarrow P_{c}[K \geqslant 32]
\end{aligned}=\underbrace{1-P_{r}[k \leqslant 31]}_{31 P_{40}}=\frac{l_{71}}{l_{40}}=.687
$$

- continued

Consider the case where $x=40, B=100,000$, mortality follows the Survival Ultimate Life Table, and $i=0.05$. Thus we have, assuming equivalence principle,

$$
P=\frac{100000 A_{40}}{\ddot{a}_{40}}=\frac{100000(0.16132)}{14.8166}=1088.779
$$

so that

$$
\tau=-\frac{1}{\log (1.06)} \log \left(\frac{1088.779 /(.06 / 1.06)}{100000+1088.779 /(.06 / 1.06)}\right)=31.30934
$$

The probability that the insurer makes a profit on the policy are

$$
\operatorname{Pr}\left[L_{0}<0\right]={ }_{31} p_{40}=\frac{\ell_{71}}{\ell_{40}}=\frac{6396609}{9313166}=0.6868351 .
$$

Return of premium policies

Consider a fully discrete whole life insurance to (x) with benefit equal to $\$ B$ plus return of all premiums accumulated with interest at rate j.
The net random future loss in this case can be expressed as
for $K=0,1, \ldots$ and $\ddot{\ddot{3}}_{\overline{K+1} j}$ is calculated at rate j. All otker actuarial functions are calculated at rate i.
Consider the following cases

- Let $j=0$. This implies $\ddot{s}_{\overline{K+1}, j}=(K+1)$ znd the annual benefit premium will be

$$
P=\frac{B A_{x}}{\ddot{a}_{x}-(I A)_{x}} .
$$

- Let $i=j$. In this case, the loss $L_{0}=B v^{K+1}$ jecause $\ddot{s}_{\overline{K+1}, j}, \chi^{K+1}=\ddot{a}_{\overline{K+1}}$. Thus, there is no possible premium because all premiums are returned and yet there is an additiona benefit of $\$ B$.
- Let $i<j$. Then we have

$$
L_{0}=\left\langle\left(\ddot{s}_{\overline{K+1} j}-\ddot{s}_{\overline{K+1}}\right) v^{K+1}+B v^{K+1},\right.
$$

which is always positive because $\ddot{s}_{\overline{K+1 \mid}} \gg \ddot{s}_{\overline{K+1}}$ when $i<j$. No possible premium.

- let $i>j$. Then we fan write the loss as
where $d_{j}=1-[1 /(1+j)]$ and $v_{j^{*}}$ is the corresponding discount rate associated with interest rate $j^{*}=[(1+i) /(1+j)]-1$. Aere,

$$
P=\frac{A_{x}}{\ddot{a}_{x}-\frac{\left(A_{x}\right)_{j^{*}-A_{x}}}{x_{x}}}
$$

where $\left(A_{x}\right)_{j^{*}}$ is a (discrete) whole life insurance to (x) evaluated at interest rate j^{*}.

Illustrative example f

For a whole life insurance on (40), you are given:

- Death benefit, payable at the end of the year of death, is equal to $\$ 10,008$ plus the return of all premiums paid without interest.
- Annual benefit premium of 290.84 is payable at the beginning of each year.
- $(I A)_{40}=8.6179$
- $i=4 \%$

Calculate \ddot{a}_{40}.

SOA Question \#22 Fall 2012

You ake given the following information about a spedial fully discrete 2-payment, 2-year term insurdnce on (80):

- Mortality follows the Surviyal Ultimate Life Takle.
- $i=0.0175$
- The death benefit is 1000 plus a keturn of all premiums palid without interest.
- Level premiums are calculated using the equivalence principle. Calculate the benefit premium for this specialinsurance.

For practice: try calculating the benefit premium if the return of all premiums paid comes with an interest of say 0.01 .

SOA Question \#3 Spring 2013

For a special fully discrete 20-year endowment insurance on (40), you are given:

- The on ly death benefit is the return of annual benefit premiums accumulated with interest at 5% to the end of the vear of death.
- The endownent benefit is 100.000 .
- Mortality folldws the Survival Ultimate Life Table.
- $i=0.05$

Calculate the annual behefit premium.

SOA Question \#7 Fall 2017

For special 10 -year deferred whole life annuity-due of 300 per year issued to (55), you are given:

- Annsal premiums are payable for 10 years.
- If deat. occurs during the deferra period, all premiums paid are returned without interest at the end of the year of death.
- $\ddot{a}_{55}=12.2758$
- $\ddot{a}_{55: 10 \mid}=7.45 .5$
- $(I A)_{55: \overline{10}}^{1}=0.51213$

Calculate the level net plemium.

Pricing with extra or substandard risks

An irppaired individual, or ohe who suffers from a mediçal condition, may still be offered an insurance pelicy but at a rate higher than that of a standard risk.

Generally there are three possible approaches:

- age rating: calculate the premiun with the individual at an older age
- constant addition to the force of mprtality: $\mu_{x+t}^{s}=\mu_{x+t}+\phi$, for $\phi>0$
- constant multiple of mortality rates: $q_{x-t}^{s}=\min \left(c q_{x+t}, 1\right)$, for $c>1$ Read Section 6.9.

Published SOA question \#45

Your company is competing to sell a life annuity-due with an APV of $\$ 500,00 \mathrm{p}$ to a 50 -year-old individual.
Based on jour company's experience, typical 50-year-old annuitants have a complete life expectancy of 25 years. However, this individual is not as healthy as your company's typical annuitant, and your rnedical experts estimate that his complete life explectancy is only 15 years.
You decide to price the benefit using the issue age that preduces a complete life expectancy of 15 years. You also assume:

- For typical annuitants of all ages, $\ell_{x}=100(\omega-x)$, for $0 \leq x \leq \omega$.
- $i=0.06$

Calculate the annual benefit that your company can offer to this individual.

Other terminologies and notations used

Expression	Other terms/symbols used
net random future loss	loss at issue $/$
L_{0}	$0 L$
net premium	benefit premium
gross premium	expense-loaded premium
equivalence principle	actuarial equivalence principle
generic premium	$G \quad P \quad \pi)^{\prime} \quad$ expense

calculater t
$i^{(m)} d^{(m)}$
(1)

12 gnesthes
Chap 2 shrivimes 1
Chap 3 liftill 1
Chp 4 istmon I_{2}
cha, 5 annins 2
chep 6 prom $\rightarrow 6^{\prime}$
0
reviur dl the p-14.m.

$$
\begin{aligned}
& + \text { lost } 2 \text { fins } \\
& + \\
& \text { revien } \\
& \text { Clant } T_{n} \text { t }
\end{aligned}
$$

