Ratemaking application of Bayesian LASSO with conjugate hyperprior

Himchan Jeong and Emiliano A. Valdez

University of Connecticut

Actuarial Science Seminar
Department of Mathematics
University of Illinois at Urbana-Champaign

26 October 2018

Outline of talk

Introduction

Regularization or penalized least squares Bayesian LASSO

Bayesian LASSO with conjugate hyperprior

LAAD penalty

Comparing the different penalty functions

Optimization routine

Model calibration

The two-part model

Data

Estimation results: frequency

Validation: frequency

Estimation results: average severity

Validation: average severity

Conclusion

Regularization or least squares penalty

• L_q penalty function:

$$\tilde{\beta} = \operatorname*{argmin}_{\beta} \left\{ ||Y - X\beta||^2 + \lambda ||\beta||_q \right\},$$

where λ is the regularization or penalty parameter and $||\beta||_q=\sum_{j=1}^p|\beta_j|^q.$

- Special cases include:
 - LASSO (Least Absolute Shrinkage and Selection Operator): q=1
 - Ridge regression: q=2
- Interpretation is to penalize unreasonable values of β .
- LASSO optimization problem:

$$\min_{\beta} \left\{ ||Y - X\beta||^2 \right\} \quad \text{subject to} \quad \sum\nolimits_{j=1}^p |\beta_j| = ||\beta||_1 \le t$$

See Tibshirani (1996)

UCONN

3 / 31

A motivation for regularization: correlated predictors

• Let y be a response variable with potential predictors x_1 , x_2 , and x_3 and consider the case when predictors are highly correlated.

Fitting the least squares regression:

```
> coef(lm(y~x1+x2+x3))
(Intercept) x1 x2 x3
-2.3347410 -16.5839237 0.2353327 -19.9617757
```

Fitting ridge regression and lasso:

Bayesian interpretation of LASSO (Naive)

Park and Casella (2008) demonstrated that we may interpret LASSO in a Bayesian framework as follows:

$$Y|\beta \sim N(X\beta, \sigma^2 I_n), \quad \beta_i|\lambda \sim \mathsf{Laplace}(0, 2/\lambda)$$

so that
$$p(\beta_i|\lambda) = \frac{\lambda}{4}e^{-\lambda|\beta_i|}$$
.

According to this specification, we may write out the likelihood for β as

$$L(\beta|Y,X,\lambda) \propto \exp\left(-\frac{1}{2\sigma^2}\left[\sum_{i=1}^n(y_i-X_i\beta)^2\right]-\lambda||\beta||_1\right)$$

and the log-likelihood as

$$\ell(\beta|Y,X,\lambda) = -\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - X_i\beta)^2 \right] - \lambda ||\beta||_1 + \mathsf{Constant}.$$

Bayesian LASSO with conjugate hyperprior

- Choice of the optimal λ is critical in penalized regression.
- Here, let us assume that

$$\begin{split} Y|\beta \sim N(X\beta,\sigma^2I_n), \\ \beta_j|\lambda_j \sim \mathsf{Laplace}(0,2/\lambda_j), \quad \lambda_j|r \overset{i.i.d.}{\sim} \mathsf{Gamma}(r/\sigma^2-1,1). \end{split}$$

• In other words, the 'hyperprior' of λ follows a gamma distribution so that $p(\lambda|r)=\lambda^{(r/\sigma^2)-p-1}e^{-\lambda}/\Gamma(r/\sigma^2-p)$, then we have

$$L(\beta, \lambda_1, \dots, \lambda_p | Y, X, r) \propto \exp\left(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - X_i \beta)^2 \right] \right) \times \prod_{j=1}^p \exp\left(-\lambda_j \left[|\beta_j| + 1 \right] \right) \lambda_j^{r/\sigma^2 - 1}.$$

Log adjusted absolute deviation (LAAD) penalty

Integrating out the λ and taking the log of the likelihood, we get

$$\ell(\beta|Y,X,r) = -\frac{1}{2\sigma^2} \left(\sum_{i=1}^n (y_i - X_i \beta)^2 + 2r \sum_{j=1}^p \log(1 + |\beta_j|) \right) + \mathsf{Const.}$$

Therefore, we have a new formulation for our penalized least squares problem. This gives rise to what we call LAAD penalty function:

$$||\beta||_L = \sum_{j=1}^p \log(1 + |\beta_j|)$$

so that

$$\widehat{\beta} = \operatorname*{argmin}_{\beta} ||y - X\beta||^2 + 2r||\beta||_L.$$

Analytic solution for the univariate case

To understand the characteristics of the new penalty, consider the simple example when X'X = I, in other words, design matrix is orthonormal so that it is enough to solve the following:

$$\widehat{\theta}_j = \operatorname*{argmin}_{\theta_j} \frac{1}{2} (z_j - \theta_j)^2 + r \log(1 + |\theta_j|).$$

By setting $\ell(\theta|r,z) = \frac{1}{2}(z-\theta)^2 + r\log(1+|\theta|)$, then we can show that minimizer will be given as $\widehat{\theta} = \theta^* \mathbb{1}_{\{|z| > z^*(r) \lor r\}}$ where $z^*(r)$ is the unique solution of

$$\begin{split} \Delta(z|r) &= \frac{1}{2}(\theta^*)^2 - \theta^*z + r\log(1+|\theta^*|) = 0, \\ \theta^* &= \frac{1}{2}(z + \mathrm{sgn}(z) \left[\sqrt{(|z|-1)^2 + 4|z| - 4r} - 1 \right]. \end{split}$$

Note that $\widehat{\theta}$ converges to z as |z| tends to ∞ .

8 / 31

Sketch of the proof

We have $\widehat{\theta} \times z \geq 0$ so we start from the case that z is nonnegative number and we have the following;

$$\ell'(\theta|r,z) = (\theta - z) + \frac{r}{1+\theta}, \ \ell''(\theta|r,z) = 1 - \frac{r}{(1+\theta)^2},$$
$$\ell'(\theta^*) = 0 \Leftrightarrow \theta^* = \frac{z-1}{2} + \frac{\sqrt{(z-1)^2 + 4z - 4r}}{2}$$

Case (1) $z \ge r \Rightarrow \ell''(\theta^*|r,z) > 0$ so that θ^* is the local minimum. Moreover, $\ell'(0|r,z) \le 0$ implies θ^* is the global minimum.

- Case (2) $z < r, z < 1 \Rightarrow \theta^* < 0$ so that $\ell'(\theta|r,z) > 0 \ \forall \ \theta \geq 0$. Therefore, $\ell(\theta|r,z)$ strictly increasing and $\widehat{\theta} = 0$.
- Case (3) $r \geq (\frac{z+1}{2})^2 \Rightarrow$ in this case, $\theta^* \notin \mathbb{R}$. Moreover, $(\frac{z+1}{2})^2 \geq z$, $\ell'(0|r,z) = r z \geq 0$ and $\ell'(\theta|r,z) > 0 \,\forall \, \theta > 0$. Therefore, $\widehat{\theta} = 0$.

Contour map of $\widehat{\theta}$

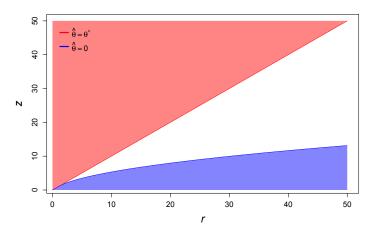


Figure 1: Distribution of the optimizer for the three cases

continued

Case (4) $1 \le z < r < (\frac{z+1}{2})^2 \Rightarrow$ First, we show that $\ell''(\theta^*|r,z) > 0$ so that θ^* is a local minimum of $\ell(\theta|r,z)$ and $\widehat{\theta}$ would be either θ^* or 0. In this case, we compute $\Delta(z|r) = \ell(\theta^*|r,z) - \ell(0|r,z)$ and

$$\widehat{\theta} = \begin{cases} \theta^* \ , & \text{if } \Delta(z|r) < 0 \\ 0 & \text{if } \Delta(z|r) > 0 \end{cases} ,$$

$$\Delta'(z|r) = \left(\theta^* - z + \frac{r}{1 + \theta^*}\right) \frac{\partial \theta^*}{\partial z} - \theta^* = -\theta^* < 0.$$

Thus, $\Delta(z|r)$ is strictly decreasing w.r.t. z and $\Delta(z|r)=0$ has a unique solution because

$$\Delta(z|r) < 0 \Leftrightarrow \widehat{\theta} = \theta^*, \text{ if } z = r$$

and

$$\Delta(z|r) > 0 \Leftrightarrow \widehat{\theta} = 0$$
, if $z = 2\sqrt{r} - 1$.

- continued

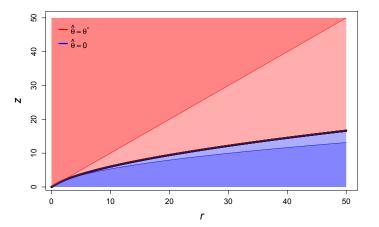


Figure 2: Distribution of the optimizer for all the cases

Estimate behavior

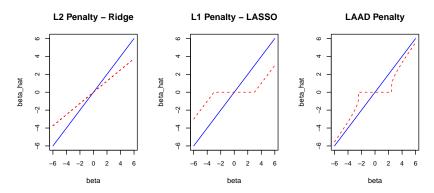


Figure 3: Estimate behavior for different penalties

Penalty regions

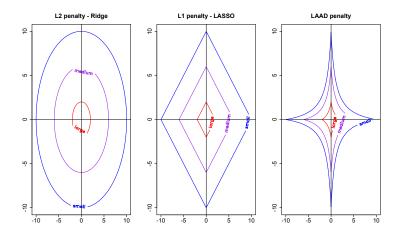


Figure 4: Penalty regions for different penalties

Coordinate descent algorithm

- Model estimation is an optimization problem
- Coordinate descent algorithm: Luo and Tseng (1992), Wu and Lange (2008)
 - start with an initial estimate and then successively optimize along each coordinate or blocks of coordinates

Do Loop

$$\begin{split} y_{(1)} &= y - \sum_{j=2}^{p} X_{j} \beta_{j}^{[old]} \\ \beta_{(1)}^{[new]} &= \mathbf{1}' y_{(1)} / n \\ \text{for } (j \text{ in } 2:p) \; \{ \\ y_{(j)} &= y_{(j-1)} - X_{j-1} \beta_{j-1}^{[new]} + X_{j} \beta_{j}^{[old]} \\ z_{(j)} &= X'_{j} y_{(j)} \\ \beta_{(j)}^{[new]} &= \operatorname{argmin}[0, \theta^{*}(z_{(j)}, r)] \; \} \end{split}$$
 Until
$$\frac{||\beta^{[new]} - \beta^{[old]}||}{||\beta^{[new]}||} < \epsilon \end{split}$$

15 / 31

The frequency-severity two-part model

- For ratemaking, e.g., in auto insurance, we have to predict the aggregate claims $S=\sum_{k=1}^n C_k$.
- Traditional approach is

Cost of Claims
$$=$$
 Frequency \times Average Severity

 The joint density of the number of claims and the average claim size can be decomposed as

$$f(N, \overline{C}|\mathbf{x}) = f(N|\mathbf{x}) \times f(\overline{C}|N, \mathbf{x})$$

joint = frequency × conditional severity.

 \bullet This natural decomposition allows us to investigate/model each component separately and it does not preclude us from assuming N and \overline{C} are independent.

The two-part model specifications

- For the frequency component:
 - N is assumed to follow a Poisson distribution so that $\mathbb{E}[N|\mathbf{x}] = e^{\mathbf{x}\alpha}$.
 - typically used in practice
 - penalized log-likelihood for estimation
- ullet For the average severity component $\overline{C}|N$:
 - We use lognormal distribution so that $\mathbb{E}\left[\log \overline{C}|N,\mathbf{x}\right] = \mathbf{x}\beta$ and $\operatorname{Var}\left(\log \overline{C}|N,\mathbf{x}\right) = \sigma^2$.
 - penalized least squares for estimation
- For both components: the log-adjusted absolute deviation (LAAD) penalty is used:

$$||\beta||_L = \sum_{j=1}^p \log(1 + |\beta_j|)$$

Penalized estimation for the two-part model

• For the frequency part, $\hat{\alpha}$ from the penalized likelihood is given as follows:

$$\widehat{\alpha} = \underset{\alpha}{\operatorname{argmin}} \left(-\sum_{i=1}^{n} (n_{it} X_{it} \alpha - e^{X_{it} \alpha}) \right) + r||\alpha||_{L}.$$

• For the average severity part, $\widehat{\beta}$ from the penalized likelihood is given as follows:

$$\widehat{\beta} = \operatorname*{argmin}_{\beta} \frac{1}{2} || \log \overline{C} - X\beta ||^2 + r ||\beta||_L$$

Observable policy characteristics used as covariates

Categorical variables	Description		Prop	ortions
VehType	Type of insured vehicle:	Car	97.75%	
		MotorBike	1.	64%
		Others	0	.6%
Gender	Insured's sex:	Male = 1	82	.78%
		Female = 0	17	.22%
Cover Code	Type of insurance cover:	${\sf Comprehensive} = 1$	74.57%	
		Others = 0	25	.43%
Continuous		Minimum	Mean	Maximum
variables				
VehCapa	Insured vehicle's capacity in cc	10.00	1560.91	9990.00
VehAge	Age of vehicle in years	-1.00	7.84	46.00
Age	The policyholder's issue age	17.00	39.98	99.00
NCD	No Claim Discount in %	0.00	23.88	50.00

- Singapore insurance data (1993–2000: Training set, 2001: Test set)
- 208,107 of aggregated total number of observations observed on training set.

Covariates for frequency estimation

- Original: VTypeCar, VTypeMBike, logVehCapa, VehAge, SexM, Comp, NCD, Age, Age2, Age3
- Interactions: MlogVehCapa, MVehAge, MAge, MAge2, MAge3

Even after adding the interaction terms, almost every covariate is significant for frequency estimation.

Estimation results: frequency component

	Reduced model	Full model	Naive LASSO	Bayesian LASSO
(Intercept)	-0.740957	-3.258836	-1.792429	-1.791314
VTypeCar	-0.585375	-0.566404	-0.000077	-0.000254
VTypeMBike	-2.085336	-2.102879	-0.000873	-0.000102
logVehCapa	0.214138	0.334423	0.000039	0.000001
VehAge	-0.009061	-0.000031	-0.000020	-0.000004
SexM	0.105565	3.166574	0.000531	0.000341
Comp	0.910381	0.909633	0.000517	0.000377
Age	-0.150428	-0.055286	0.000005	0.000005
Age2	0.002705	0.000936	0.000000	0.000000
Age3	-0.000015	-0.000005	0.000000	0.000000
NCD	-0.009976	-0.009943	-0.000004	0.000000
MlogVehCapa		-0.140558	0.000100	0.000082
MVehAge		-0.010818	0.000041	0.000018
MAge		-0.119687	0.000007	0.000003
MAge2		0.002232	0.000000	0.000000
MAge3		-0.000013	0.000000	0.000000
Loglikelihood	-54811.696563	-54796.659753	-55542.756271	-55547.849702
AIC	109645.393127	109625.319506	111117.512543	111127.699405
BIC	109758.097011	109789.252428	111281.445465	111291.632327

Tuning the frequency penalty parameter

Tuning penalty parameter: Poisson frequency

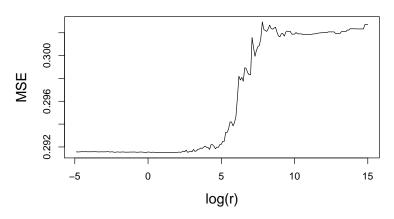


Figure 5: Tuning the penalty parameter: frequency component

Validation results: Poisson frequency

Comparing the MAE and MSE for the various models

	Reduced	Full	Naive	Bayesian
	model	model	LASSO	LASSO
MAE	0.13343	0.13344	0.13883	0.13890
MSE	0.27873	0.27876	0.28043	0.28044

Frequency validation results - Gini index

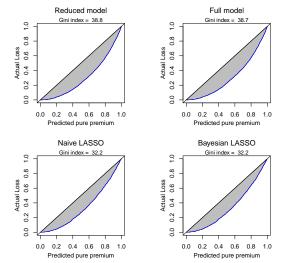


Figure 6: Gini indices for the Poisson frequency models

Covariates for average severity estimation

- Original: VTypeCar, VTypeMBike, logVehCapa, VehAge, Comp, NCD, Age, Age2, Age3, Count, SexM
- Interactions: FintNCD, FintVehAge, FintComp, FintVTypeCar, FintlogVehCapa, FintSexM, FintAge, FintAge2, FintAge3

After adding the interaction terms, only some covariates are significant for the average severity estimation.

Estimation results: average severity component

	Reduced model	Full model	Naive LASSO	Bayesian LASSO
(Intercept)	7.153653	7.444373	7.673586	7.533879
VTypeCar	-0.613385	-0.718301		-0.579297
VTypeMBike	-0.699988	-0.804159	-0.336990	-0.680890
logVehCapa	0.226679	0.238242		0.221583
VehAge	-0.010845	-0.012367	-0.014867	-0.011665
SexM	-0.022395	-0.034773		-0.028442
Comp	0.321747	0.279826	0.285615	0.292984
Age	-0.072443	-0.068476		-0.077812
Age2	0.001406	0.001330		0.001538
Age3	-0.000008	-0.000008	0.000000	-0.000009
NCD	-0.002662	-0.002899	-0.003135	-0.002876
Count	0.725876	0.453060	0.208421	0.451539
Fint_VTypeCar		1.144692	0.009752	
Fint_logVehCapa		-0.151809		
Fint_VehAge		0.019121	0.012669	0.010154
Fint_SexM		0.115636	0.046500	0.074754
Fint_Comp		0.642902	0.605135	0.481527
Fint_Age		-0.037246		-0.010455
Fint_Age2		0.000723		
Fint_Age3		-0.000004	0.000000	0.000001
Fint_NCD		0.003337	0.002222	0.003331
Loglikelihood	-21589.565106	-21569.896261	-22832.531841	-22049.633473
AIC	43205.130212	43183.792522	45685.063682	44141.266945
BIC	43303.550718	43350.350300	45760.771763	44300.253916

Tuning the average severity penalty parameter

Tuning penalty parameter: Lognormal severity

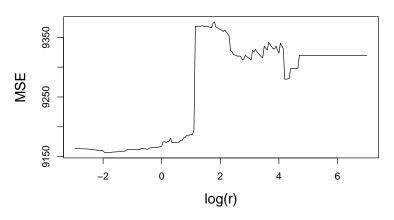


Figure 7: Tuning the penalty parameter

Validation results: Lognormal average severity

Comparing the MAE and MSE for the various models

	Reduced	Full	Naive	Bayesian
	model	model	LASSO	LASSO
MAE	3002.512	2995.511	3112.826	2993.567
MSE	4985.503	4970.821	5396.835	4967.892

28 / 31

Severity validation results - Gini index

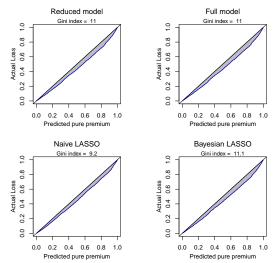


Figure 8: Gini indices for the Lognormal average severity models

Concluding remarks

- We suggest a model using a hyperprior for the λ in the Bayesian LASSO, which yielded a new penalty function with good properties such as variable selection as well as reversion to the true regression coefficients.
- While our proposed LASSO model did not perform well for the frequency component, it was the optimal choice for the average severity component. Note that we could not have enough degree of sparsity from fitting the frequency, but moderate degree of sparsity for fitting the average severity component.
- Compared to Naive LASSO model which uses L_1 penalty for regularization, our proposed LASSO model showed better performance with respect to all of the validation measures, such as MSE, MAE, and Gini index, which support the assertion that our proposed model enables variable selection with less bias on the regression coefficient estimate.

Acknowledgment

- We thank the financial support of the Society of Actuaries through our CAE grant on data mining.
- Thank you to all present here.

