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Abstract

Abstract: Dynamical Algebraic Combinatorics explores actions on sets
of discrete combinatorial objects, many of which can be built up by small
local changes, e.g., Schutzenberger's promotion and evacuation, or the
rowmotion map on order ideals. There are strong connections to the
combinatorics of representation theory and with Coxeter groups. Birational
liftings of these actions are related to the Y-systems of statistical
mechanics, thereby to cluster algebras, in ways that are still relatively
unexplored. The term "homomesy" (coined by Jim Propp and the speaker)
describes the following widespread phenomenon. Given a group action on
a set of combinatorial objects, a statistic on these objects is called
homomesic if its average value is the same over all orbits. Along with its
intrinsic interest as a kind of "hidden invariant", homomesy can be used to
prove certain properties of the action, e.g., facts about the orbit sizes.
Proofs of homomesy often involve developing tools that further our
understanding of the underlying dynamics, e.g., by finding an equivariant
bijection.

This talk will focus on the combinatorial side, giving a number of examples
of homomesy due to the author and others.
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@ Homomesy: definition and examples;
@ Rowmotion on rectangular posets (products of two chains);

@ Liftings to piecewise-linear and birational actions;



Main Definition: Homomesy = “Constant Averages over Orbits”

For many actions 7 on a finite set S of combinatorial objects, and
for many natural real-valued statistics ¢ on S, one finds that the
ergodic average

1 n—1 )
lim =" o(v(x))
i=0

n—o0 N 4

is independent of the starting point x € S.

We say that ¢ is homomesic (from Greek: “same middle”) with
respect to the combinatorial dynamical system (S, 7).



Introductory examples

© Rotation of bit-strings;
@ Bulgarian solitaire;
© Promotion of Near-Standard Young Tableaux; and

@ Suter's dihedral symmetries on Young's lattice.



Example 1: Rotation of bit-strings

Set S = <[Z]), thought of as length n binary strings with k 1's.
T .= CR 55§ by b= b1b2 : '-bn — bnb1b2~ "bn—l (cyclic
shift), and p(b) = #inversions(b) = #{i < j : bj > b;}.

Then over any orbit O we have:
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Example 1: Rotation of bit-strings

Set S = <[Z]), thought of as length n binary strings with k 1's.
T .= CR 55§ by b= b1b2 : '-bn — bnb1b2~ "bn—l (cyclic
shift), and p(b) = #inversions(b) = #{i < j : bj > b;}.

Then over any orbit O we have:
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EG: n =4, k = 2 gives us two orbits:

0011 0101



Example 1: Rotation of bit-strings

Set S = <[Z]), thought of as length n binary strings with k 1's.
T .= CR 5> S by b= b1b2 : '-bn — bnb1b2~ "bn—l (cyclic
shift), and p(b) = #inversions(b) = #{i < j : bj > b;}.

Then over any orbit O we have:
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s€O seS

EG: n =4, k = 2 gives us two orbits:

0011 0101
1001 1010
1100 0101
0110
0011



Example 1: Rotation of bit-strings

Set S = <[Z]), thought of as length n binary strings with k 1's.
T .= CR 5> S by b= b1b2 : '-bn — bnb1b2~ "bn—l (cyclic
shift), and p(b) = #inversions(b) = #{i < j : bj > b;}.

Then over any orbit O we have:

0290 T2 SZ“D

s€O seS

EG: n =4, k = 2 gives us two orbits:

0011 0101
1001 — 2 1010 — 3
1100 — 4 0101 — 1
0110 — 2
0011 — O




Example 1: Rotation of bit-strings

Set S = <[Z]), thought of as length n binary strings with k 1's.
T .= CR 5> S by b= b1b2 : '-bn — bnb1b2~ "bn—l (cyclic
shift), and p(b) = #inversions(b) = #{i < j : bj > b;}.

Then over any orbit O we have:

(’)ZS@ T2 SZSD

s€O seS

EG: n =4, k = 2 gives us two orbits:

0011 0101
1001 + 2 1010 -+ 3
1100 +— 4 0101 — 1
0110 »2 AVG =3 =2
0011 — 0

AVG= 8 =2




EG: n =6, k = 2 gives us three orbits:

000011 000101 001001




EG: n =6, k = 2 gives us three orbits:

000011 000101 001001
100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101




EG: n =6, k = 2 gives us three orbits:

000011 000101 001001
100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101




EG: n =6, k = 2 gives us three orbits:

000011 000101 001001
100001 — 4 100010 — 5 100100 — 6
110000 — 8 010001 — 3 010010 — 4
011000 — 6 101000 +— 7 001001 +— 2
001100 + 4 010100 +— 5
000110 — 2 001010 — 3
000011 — 0 000101 1



EG: n =6, k = 2 gives us three orbits:

000011 000101 001001
100001 — 4 100010 — 5 100100 — 6
110000 — 8 010001 — 3 010010 — 4
011000 — 6 101000 — 7 001001 — 2
001100 — 4 010100 +— 5
000110 — 2 001010 — 3
000011 — 0 000101 +— 1

AVG=2 =4 AG=2 =4 AG=L=14



EG: n =6, k = 2 gives us three orbits:

000011 000101 001001
100001 — 4 100010 — 5 100100 s 6
110000 — 8 010001 — 3 010010 s 4
011000 — 6 101000 —» 7 001001 — 2
001100 — 4 010100 + 5
000110 — 2 001010 — 3
000011 — 0 000101 — 1

AVG= 2 =4 AVG=% =4 AVG=1 =4

We know two simple ways to prove this: one can show pictorially
that the value of the sum doesn’t change when you mutate b
(replacing a 01 somewhere in b by 10 or vice versa), or one can write
the number of inversions in b as 3, bj(1 — b;) and then perform
algebraic manipulations.



Example 2: Bulgarian solitaire

Given a way of dividing n identical chips into one or more heaps
(represented as a partition A of n), define 6(\) as the partition of n
that results from removing a chip from each heap and putting all the
removed chips into a new heap.

@ First surfaced as a puzzle in Russia around 1980, and a solution
by Andrei Toom in Kvant; later popularized in 1983 Martin
Gardner column; see survey of Brian Hopkins [Hop12].

@ Initial puzzle: starting from any of 176 partitions of 15, one
ends at (5,4,3,2,1).




Bulgarian solitaire: homomesies

E.g., for n = 8, two trajectories are
53 — 422 — 3311 — 422 — . ..
and
62 — 521 — 431 — 332 — 3221 — 4211 — 431 — ...

(the new heaps are underlined).
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Bulgarian solitaire: homomesies
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Let ©(A) be the number of parts of A. In the forward orbit of A = (5, 3),
the average value of ¢ is (4 4 3)/2 = 7/2; while for A = (6, 2), the
average value of @ is (3+4+4+3)/4=14/4=7/2.

Proposition (“Bulgarian Solitaire has homomesic number of parts”)

If n=k(k—1)/2+j with 0 < j < k, then for every partition A of n, the
ergodic average of ¢ on the forward orbit of X is k — 1+ j/k.

(n = 8 corresponds to k = 4, j = 2.) So the number-of-parts statistic on
partitions of n is homomesic 6; similarly for “size of (kth) largest part”.



Ignoring transience

Since S is finite, every forward orbit is eventually periodic, and the
ergodic average of ¢ for the forward orbit that starts at x is just the
average of ¢ over the periodic orbit that x eventually goes into.

So an equivalent way of stating our main definition in this case is, ¢
is homomesic with respect to (S, 7) iff the average of ¢ over each
periodic T-orbit O is the same for all O.

In the rest of this talk, we'll restrict attention to maps 7 that are
invertible on S, so transience is not an issue.

Definition ([PrRo15])

Given an (invertible) action 7 on a finite set of objects S, call a
statistic f : S — C homomesic with respect to (S, 7) if the
average of f over each 7-orbit O is the same constant ¢ for all O,

ie., #—10 Z f(s) = c does not depend on the choice of O.

s€O
(Call f c-mesic for short.)




Example 3: Promotion of Semi-Standard Young Tableaux

Given a partition A and N € P, a Semi-Standard Young Tableau
(SSYT) of shape XA on [N] = {1,2,..., N} is a filling of the
diagram of T with entries from [N] which increases weekly in rows,
strictly in columns.

For each i € [N — 1], let s; be the action on SSYT's with ceiling N
that replaces i (if it occurs in T) by i/ + 1, and vice versa, provided
that this does not violate the increasing condition in the definition of
Young tableaux, and let O be the composition of the maps:

8TI:SN,]_OSN,2O---O$1T

This gives an operation on SYT introduced by Schiitzenberger called
promotion.

For example, applying s;7 transforms the following tableau as shown:

1[4]7]10] 1[{4[8][10]
21811 o 2071
619 619




Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)

416 ]10]




Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)

T[4]6Ji0] [1]4]6]10]
2[8il 2[8]il
T=07191  , [




Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)

1J476]10] [1T4T6J10] [1T4]6]10]
21811 21811 31811
T=1719 . 719 . 719 ,




Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)

1[4]6]10] [1T4T6]10] [L1T4T6f10] [1]3]6]10]
21811 21811 31811 41811
T=1719 . 719 . 719 , 719 ,




Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)

1[4]6]10] [1T4T6]10] [L1T4T6f10] [1]3]6]10]
21811 21811 31811 41811
T=1719 . 719 . 719 , 719 ,
1137610
51811
719




Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)
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Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)
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Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)

1[4]6fi0] [1]4]6]10] [L1]4l6fio] [1]3]6]10]

21811 21811 31811 41811
T=1719 . 719 . 719 , 719 ,
1131610 [1[3[5]100 [1]3]5f10] [1]3]5]10]
51811 6811 6811 67|11
719 . Z19 . Z19 . 819




Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)

1[4]6]10] [1T4T6]10] [L1T4T6f10] [1]3]6]10]
21811 21811 31811 41811
T=1719 . 719 . 719 , 719 ,
1131610 [1[3[5]100 [1]3]5f10] [1]3]5]10]
51811 6811 6811 67|11
719 . Z19 . Z19 . 819 ,
1[3]5]10]
67|11
819




Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)

1[4]6]10] [1T4T6]10] [L1T4T6f10] [1]3]6]10]
21811 21811 31811 41811
T=1719 . 719 . 719 , 719 ,
1131610 [1[3[5]100 [1]3]5f10] [1]3]5]10]
51811 6811 6811 67|11
719 . Z19 . Z19 . 819 ,
113]5J100 [1]3]5]9]
67|11 67|11
819 . [8]10 7




Promotion of SSYT

Here's a step-by-step example of promotion, where the final tableaux
is OT = s1059---s1T. (Here the ceiling N =11.)

1[4]6]10] [1T4T6]10] [L1T4T6f10] [1]3]6]10]

21811 21811 31811 41811
T=1719 . 719 . 719 , 719 ,
1131610 [1[3[5]100 [1]3]5f10] [1]3]5]10]
51811 6811 6811 67|11
719 . Z19 . Z19 . 819 ,

1[3]5]10] [1]3]5]9] [1I3]5]9]

67|11 6|7|11 6]7]10

819 . [8]10 . 8liL — 9T




A small example of promotion

(taken from J. Striker and N. Williams, Promotion and Rowmotion,
European J. Combin. 33 (2012), no. 8, 1919-1942;
http://arxiv.org/abs/1108.1172):

J. Striker, N. Williams / European Journal of Combinatorics 33 (2012) 1919-1942 1927

23] [12]5] [ noagnan
] BER) BEED {I?hlﬁl‘lﬁlﬁlﬁl}

1[2]
4[5

Fig.5. The two orbits of SYT of shape (3, 3) under promotion, the same two orbits as maximal chains, and the same two orbits
as order ideals under Pro.


http://arxiv.org/abs/1108.1172

A small example of promotion: centrally symmetric sums

J. Striker, N. Williams / European Journal of Combinatorics 33 (2012) 1919-1942 1927
AR, [T IIVBM} yaaNeaao) ,\\m -~
[4fs]e]" [3[4f6]" [2[5]6] l.ﬂ IIH

U

3 b thin

v v Y Ty Ty ﬁac h

SN NN NN orsi
SN INY SN SNY NS
NN,NTZN NN, NV NN N

NSNS NN

N, N, N, N, N,

Fig.5. The two orbits of SYT of shape (3, 3) under promotion, the same two orbits as maximal chains, and the same two orbits
as order ideals under Pro.



Promotion of Semi-Standard Young Tableaux: homomesies

Theorem (Bloom-Pechenik-Saracino 2016, Conj. Propp-Roby
2013)

Let S be the set of Semi-Standard Young Tableau of rectangular
shape \, and ceiling N. If c and ¢’ are opposite cells, i.e., ¢ and ¢’
are related by 180-degree rotation about the center, (note: the case
¢ = ¢ is permitted when \ is odd-by-odd), and o(T) denotes the
sum of the numbers in cells ¢ and c’, then ¢ is homomesic with
respect to (S, d) with average value N + 1.




Promotion of Semi-Standard Young Tableaux: homomesies

Theorem (Bloom-Pechenik-Saracino 2016, Conj. Propp-Roby
2013)

Let S be the set of Semi-Standard Young Tableau of rectangular
shape \, and ceiling N. If ¢ and ¢’ are opposite cells, i.e., ¢ and ¢’
are related by 180-degree rotation about the center, (note: the case
¢ = ¢ is permitted when \ is odd-by-odd), and o(T) denotes the
sum of the numbers in cells ¢ and c’, then ¢ is homomesic with
respect to (S, d) with average value N + 1.

Although rectangular shapes may appear to be a very special case,
they are one of the few shapes where the order of promotion on the
set of SYT is small, i.e., n or 2n. Striker & Williams point out that
the order of promotion on SYT of shape (8,6) is 7,554,844,752.




Rowmotion: an invertible operation on antichains

Let LA(P) be the set of antichains of a finite poset P.

Given A € A(P), let pa(A) be the set of minimal elements of the
complement of the downward-saturation of A.

pa is invertible since it is a composition of three invertible operations:

antichains «— downsets +—> upsets «— antichains

This map and its inverse have been considered with varying degrees of
generality, by many people more or less independently (using a variety of
nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron
and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and
Williams, who named it rowmotion.



Example in lattice cell form

Viewing the elements of the poset as squares below, we would map:

X
\/)\/(\/ _> X X

Area = 8 Area = 10



Panyushev’s conjecture (AST's theorem)

Let A be a (reduced irreducible) root system in R". (Pictures soon!)

Choose a system of positive roots and make it a poset of rank n by
decreeing that y covers x iff y — x is a simple root.

Theorem (Armstrong-Stump-Thomas [AST11], Conj. [Pan09])
Let O be an arbitrary pa-orbit. Then

1 n

AcO

In our language, the cardinality statistic is homomesic with respect to the
action of rowmotion on antichains in root posets.



Picture of root posets

Here are the classes of posets included in Panyushev’s conjecture.

¥ F
0] (Ag) [ (BS) e +e2
P
e +e3
e —es ™~
—~ ~ - el -~ €2+ €3
€1 — €3 €2 — €4
~ ~~ 7 ~ e —ey \ e ~
e —e e —ey e3— ey P . — \
e —e e2—e3 e3
+ +
@ (03) 2e; ® (D4) e +e
~ ~
e+ e ertes
~ ™~ e1—ex” ‘,mom _ez+ey
er+es 2ep — T -
~ ™~ e er—ez e-eT _ete
e —e3 ex+e3 ~ ~ . ~
- ~ - . e — ey e2—ey €3 — €4 e3teq
e —ez ez —e3 2e3

(Graphic courtesy of Striker-Williams.)



Panyushev’s conjecture: The A, case, n =2

Here we have just an orbit of size 2 and an orbit of size 3:

Within each orbit, the average antichain has cardinality n/2 = 1.



Example of Rowmotion on A3 root poset

For the type A3 root poset, there are 3 pa-orbits, of sizes 8, 4, 2:

O @) O O
/N /N /N /N
(@] (@] — O o — 0 ([ ] — @ @)
/N /N /N /N /N /N /N /0N
[ ] @) ] ] [ ] [ ] [ @] O O O @)
@) @] ] O
/N /N /N VAN
— O (@] — @) o — [ ] @) — (@] [ ]
/N 7/ N /N 7/ N\ /N /N VNN
O @) [ ] [ [ ] @) @) ] [ ] @) O O
@) @) ] [ ]
/N /N /N VAN
o (@] — O (@] — @ ([ ] — O @)
/N 7/ N\ N NN A NN /7 N 7 N\
O (@] O [ ] ([ ] [ ] O @) o @) O @)
O @)
/N /N
O O «~— O ©)
NN /N /N
[ ] O [ (@] [ ] (@]

Checking the average cardinality for each orbit we find that
1+2+2+1+14+242+1 0+4+3+2+1 2+1 3

8 4 2 2




Antichains in [a] x [b]: cardinality is homomesic

A simpler-to-prove phenomenon of this kind concerns the poset [a] x [b]
(the type A minuscule poset), where [k] = {1,2,..., k}:

Theorem (Propp, R.)

Let O be an arbitrary pa-orbit in A([a] x [b]). Then

1 ab
%Z#A:cﬂ—b'

AcO




Antichains in [a] x [b]: cardinality is homomesic

Theorem (Propp, R.)
Let O be an arbitrary pa-orbit in A([a] x [b]). Then

1 ab
%Z#A:a+b'

AcO

This proof uses an non-obvious equivariant bijection (the “Stanley-Thomas”
word [Sta09, §2]) between order ideals in [a] x [b] and binary strings,
which carries the p; action to cyclic rotation of bitstrings.



Antichains in [a] x [b]: cardinality is homomesic

Theorem (Propp, R.)

Let O be an arbitrary pa-orbit in A([a] x [b]). Then

s D)
+1-1 -1 -1 +1+1-1

+1-1-1+1-1

Shows the Stanley-Thomas word for a 3-element antichain in A([7] x [5]).



Antichains in [a] x [b]: the case a=b =2

Here we have an orbit of size 2 and an orbit of size 4:

&<
o000

Within each orbit, the average antichain has cardinality
ab/(a+b)=1.



Antichains in [a] x [b]: fiber-cardinality is homomesic

v
v

Within each orbit, the average antichain has

10

1/2 a green element and 1/2 a blue element.



Antichains in [a] x [b]: fiber-cardinality is homomesic

For (i,j) € [a] x [b], and A an antichain in [a] x [b], let 1;;(A) be 1
or 0 according to whether or not A contains (i, ).

intersection of A Wi’éh the fiber {(i,1),(i,2),...,(i,b)} in [a] x [b]),

so that #A =), fi(A).
Likewise let gj(A) = Z;E[a] 1;j(A), so that #A = 3. gj(A).

Also, let fi(A) =3 1y 1ij(A) € {0, 1} (the cardinality of the

Theorem (Propp, R.)

For all i, j,
1 b 1 a
— > fi(A) = and ) gi(A) = :
#0 AcO 2 #0 A€O e

The indicator functions f; and g; are homomesic under p4, even
though the indicator functions 1;; aren't.



Antichains in [a] x [b]: centrally symmetric homomesies

Theorem (Propp, R.)

In any orbit, the number of A that contain (i,j) equals the number
of A that contain the opposite element
(i"j)=(a+1—i,b+1—)).

That is, the function 1; j — 1j j is homomesic under pa, with
average value 0 in each orbit.



Rowmotion on order ideals

We've already seen examples of Rowmotion on antichains pa:

We can also define it as an operator p; on J(P), the set of order
ideals of a poset P, by shifting the waltz beat by 1:



Rowmotion on [4] x [2] A
1

Rowmotion

(=Jel(+)



Rowmotion on [4] x [2] A

1 2 3

A =0 Area =1 Area = 3
4 5 6/\
Area =5 Area =7 Area =8

(O+1+4345+748) /6 =4



Rowmotion on [4] x [2] B
1

Rowmotion

(=Jel(+)



Rowmotion on [4] x [2] B

(2+4+6+6+4+2) / 6 =4



Rowmotion on [4] x [2] C
1

Rowmotion

(=Jel(+)



Rowmotion on [4] x [2] C

Area = 3 Area =5 Area =4

(3+5+4434+5+4) / 6 =4




Ideals in [a] x [b]: the case a=b =2

Again we have an orbit of size 2 and an orbit of size 4:

&<
>0 o0

Within each orbit, the average order ideal has cardinality ab/2 = 2.



Ideals in [a] x [b]: file-cardinality is homomesic

<O Q

110 011
000 010 121

Within each orbit, the average order ideal has

1/2 a violet element, 1 red element, and 1/2 a brown element.



Ideals in [a] x [b]: file-cardinality is homomesic

For 1 — b < k < a—1, define the kth file of [a] x [b] as

{(i,j):1<i<a 1<j<b, i—j=k}.

For1— b < k<a-—1,let he(l) be the number of elements of / in
the kth file of [a] x [b], so that #/ =", hi(/).

Theorem (Propp, R.)

For every pj-orbit O in J([a] x [b]):
1 (=kb iy >0
E : _ b =
%0 ()= albirl) ) <0.

1€eO a+b

1 ab
. #_OZ#/:?.

1€O




Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into
many small operations, each an involution.

@ Define t, (S) as:

o S A {v} (symmetric difference) if this is an order ideal;
o S otherwise.



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into
many small operations, each an involution.

@ Define t, (S) as:

o S A {v} (symmetric difference) if this is an order ideal;
o S otherwise.

(“Try to add or remove v from S, as long as the result remains
an order ideal, i.e. within J(P); otherwise, leave S fixed.”)



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into
many small operations, each an involution.

@ Define t, (S) as:
o S A {v} (symmetric difference) if this is an order ideal;
o S otherwise.
(“Try to add or remove v from S, as long as the result remains
an order ideal, i.e. within J(P); otherwise, leave S fixed.”)
@ More formally, if P is a poset and v € P, then the v-toggle is
the map t, : J(P) — J(P) which takes every order ideal S to:

e SU{v}, if visnotin S but all elements of P covered by v are
in S already;

o S\ {v}, if visin S but none of the elements of P covering v is
inS;

o S otherwise.

@ Note that t2 = id.



Classical rowmotion: the toggling definition

o Let (vi,v2,...,v,) be a linear extension of P; this means a list
of all elements of P (each only once) such that i < j whenever
vi <.

@ Cameron and Fon-der-Flaass showed that

r=t,ot,o..ot,,.

Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWil7].
Example: Re-coordinatizing P = [a] x [b] = [0, r] x [0, s], sorry!
Start with this order ideal S:
(1
(1, < (0,1)

1)
o
7



Classical rowmotion: the toggling definition

o Let (vi,v2,...,v,) be a linear extension of P; this means a list
of all elements of P (each only once) such that i < j whenever
vi <.
@ Cameron and Fon-der-Flaass showed that
r=t,ot,o..ot,,.
Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWil7].
Example: Re-coordinatizing P = [a] x [b] = [0, r] x [0, s], sorry!
First apply t(;,1), which changes nothing:
(1,1)
(1, (0,1)



Classical rowmotion: the toggling definition

o Let (vi,v2,...,v,) be a linear extension of P; this means a list
of all elements of P (each only once) such that i < j whenever
vi <.
@ Cameron and Fon-der-Flaass showed that
r=t,ot,o..ot,,.
Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWil7].
Example: Re-coordinatizing P = [a] x [b] = [0, r] x [0, s], sorry!
Then apply t(;,0), which removes (1,0) from the order ideal:

(1,1)
/ \
(1, (0,1)

\(O O)/



Classical rowmotion: the toggling definition

o Let (vi,v2,...,v,) be a linear extension of P; this means a list
of all elements of P (each only once) such that i < j whenever
vi <.
@ Cameron and Fon-der-Flaass showed that
r=t,ot,o..ot,,.
Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWil7].
Example: Re-coordinatizing P = [a] x [b] = [0, r] x [0, s], sorry!
Then apply t(g,1), which adds (0,1) to the order ideal:

\
/

(1,1)

(1,

/
\(o 0)



Classical rowmotion: the toggling definition

o Let (vi,v2,...,v,) be a linear extension of P; this means a list
of all elements of P (each only once) such that i < j whenever
vi <.

@ Cameron and Fon-der-Flaass showed that

r=t,ot,o..ot,,.

Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWil7].

Example: Re-coordinatizing P = [a] x [b] = [0, r] x [0, s], sorry!
Finally apply t(g,0), which changes nothing:

(1,1)
/ \
\ /

(1,



Classical rowmotion: the toggling definition

o Let (vi,v2,...,v,) be a linear extension of P; this means a list
of all elements of P (each only once) such that i < j whenever
vi <.
@ Cameron and Fon-der-Flaass showed that
r=t,ot,o..ot,,.
Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWil7].
Example: Re-coordinatizing P = [a] x [b] = [0, r] x [0, s], sorry!
So thisis S — r(S):

(1,1) — (1,1)



Generalizing to the piecewise-linear setting

The decomposition of classical rowmotion into toggles allows us to

define a piecewise-linear (PL) version of rowmotion acting on
functions on a poset.

Let P be a poset, with an extra minimal element 0 and an extra
maximal element 1 adjoined.
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The decomposition of classical rowmotion into toggles allows us to
define a piecewise-linear (PL) version of rowmotion acting on
functions on a poset.

Let P be a poset, with an extra minimal element 0 and an extra
maximal element 1 adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P — [0, 1] with f(0) =0, f(1) =1, and f(x) < f(y)
whenever x <p y.



Generalizing to the piecewise-linear setting

The decomposition of classical rowmotion into toggles allows us to
define a piecewise-linear (PL) version of rowmotion acting on
functions on a poset.

Let P be a poset, with an extra minimal element 0 and an extra
maximal element 1 adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P — [0, 1] with f(0) =0, f(1) =1, and f(x) < f(y)
whenever x <p y.

For each x € P, define the flip-map o : O(P) — O(P) sending f
to the unique f’ satisfying

oy | fly) if y # x,
Fly)= { Miny - F(2) + Maxwe. x (W) — F(x) if y = x,

where z->x means z covers x and w <-x means x covers w.



Generalizing to the piecewise-linear setting

For each x € P, define the flip-map o : O(P) — O(P) sending f
to the unique f’ satisfying

f’(y) :{ f(y) if y # x,

minz.>x f(z) + maxy<.x f(w) — f(x) if y =x,
where z->x means z covers x and w <-x means x covers w.
Note that the interval [min, .~ f(z), maxy<.x f(w)] is precisely the

set of values that f/(x) could have so as to satisfy the
order-preserving condition.

if '(y) = f(y) for all y # x, the map that sends

f(x) to Zm;rl f(z) + max f(w) — f(x)

w<- X

is just the affine involution that swaps the endpoints.



Example of flipping at a node

min f(z) + max f(w) =.7+.2=.9

zZ->X w<- X

f(x)+f(x)=4+5=.9



Composing flips

Just as we can apply toggle-maps from top to bottom, we can apply
flip-maps from top to bottom, to get piecewise-linear rowmotion:

NN N

A YIAY

(We successively flip at N = (1,1), W = (1,0), £ = (0,1), and
S =(0,0) in order.)



How PL rowmotion generalizes classical rowmotion

For each x € P, define the flip-map o, : O(P) — O(P) sending f
to the unique f’ satisfying

ming .~y f(z) + maxy<.x f(w) — f(x) if y =x,
where z->x means z covers x and w <-x means x covers w.
Example:

Start with this order ideal S:



How PL rowmotion generalizes classical rowmotion

For each x € P, define the flip-map o, : O(P) — O(P) sending f
to the unique f’ satisfying

oy | fy) iy #x,
) _{ minz s f(z) + maxy<.x f(w) — f(x) if y =x,

where z->x means z covers x and w <-x means x covers w.

Example:

Translated to the PL setting:

N
N\,



How PL rowmotion generalizes classical rowmotion

For each x € P, define the flip-map o, : O(P) — O(P) sending f
to the unique f’ satisfying

oy | fy) iy #x,
) _{ minz s f(z) + maxy<.x f(w) — f(x) if y =x,

where z->x means z covers x and w <-x means x covers w.
Example:

First apply t(;,1), which changes nothing:

0/1\1
N,



How PL rowmotion generalizes classical rowmotion

For each x € P, define the flip-map o, : O(P) — O(P) sending f
to the unique f’ satisfying

oy | fy) iy #x,
) _{ minz s f(z) + maxy<.x f(w) — f(x) if y =x,

where z->x means z covers x and w <-x means x covers w.

Example:

Then apply t(; o), which removes (1,0) from the order ideal:

1/1\1
N,



How PL rowmotion generalizes classical rowmotion

For each x € P, define the flip-map o, : O(P) — O(P) sending f
to the unique f’ satisfying

oy | fy) iy #x,
) _{ minz s f(z) + maxy<.x f(w) — f(x) if y =x,

where z->x means z covers x and w <-x means x covers w.

Example:

Then apply t(g,1), which adds (0,1) to the order ideal:

1/1\0
N,



How PL rowmotion generalizes classical rowmotion

For each x € P, define the flip-map o, : O(P) — O(P) sending f
to the unique f’ satisfying

oy | fy) iy #x,
) _{ minz s f(z) + maxy<.x f(w) — f(x) if y =x,

where z->x means z covers x and w <-x means x covers w.
Example:

Finally apply t(g,0), which changes nothing:

1/1\0
N,



How PL rowmotion generalizes classical rowmotion

For each x € P, define the flip-map o, : O(P) — O(P) sending f
to the unique f’ satisfying

y minz.>x f(z) + maxy<.x f(w) — f(x) if y =x,
where z->x means z covers x and w <-x means x covers w.

Example:

So this is S — r(S):



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary

ring operations (+, -) with the tropical operations (max, +). In the
piecewise-linear (PL) category of the order polytope studied above,
our flipping-map at x replaced the value of a function f : P — [0, 1]
at a point x € P with f/, where

f'(x) := min f(z)+ max f(w) — f(x)

We can'detropicalize” this flip map and apply it to an assignment

f : P — R(x) of rational functions to the nodes of the poset, using
that

min(z;) = — max(—z;), to get the birational toggle map

D wex (W)
f(x) Zz~>x %

(Th)) = F(x) =



Birational rowmotion: definition

@ Let P be a finite poset. We define P to be the poset obtained
by adjoining two new elements 0 and 1 to P and forcing
° §to be less than every other element, and
o 1 to be greater than every other element.
o Let K be a field.
@ A K-labelling of P will mean a function P K.

@ The values of such a function will be called the labels of the
labelling.

o We will represent labellings by drawing the labels on the
vertices of the Hasse diagram of P.

@ For any v € P, define the birational v-toggle as the rational
map

T, : KP - KP defined by (T,f) (w) = ;522" for
Pou->v f(u)

w = V.

(We leave (T,f)(w) = f(w) when w # v.)



Birational rowmotion: definition

@ For any v € P, define the birational v-toggle as the rational
map
T, : KP ——» KP defined by (T, ) (w) = e for

V) Zu >v f(u)
w = V.

@ Notice that this is a local change only to the label at v.
@ We have T2 = id (on the range of T,), and T, is a birational
map.



Birational rowmotion: definition

@ For any v € P, define the birational v-toggle as the rational

map

T, L KP ——> KP defined by (T,f)(w) = %fﬂ
u->v f(

w=v.

@ Notice that this is a local change only to the label at v.

@ We have T2 = id (on the range of T,), and T, is a birational
map.

@ We define birational rowmotion as the rational map

pp:=T,oT,0..0T, : KP --» K’S,

where (v1, va, ..., vp) is a linear extension of P.
@ This is indeed independent of the linear extension, because
e T, and T, commute whenever v and w are incomparable (even
whenever they are not adjacent in the Hasse diagram of P);
e we can get from any linear extension to any other by switching
incomparable adjacent elements.
@ This is originally due to Einstein and Propp [EiPr13, EiPr14].
Another exposition of these ideas can be found in [Rob16].



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 x 2-rectangle:

poset labelling
1 1
| |
PanS Ay
(1,0) (0.1) \ Vi
NS
(0,0) {

L
0




Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 x 2-rectangle:

poset labelling
1 1
l ;
PanS N
(1,0) (0,1) \ /
NS w
(0,0) |
| 1
0

We have pg = T0.0)© T(0,1) © T(1,0)© T(1,1)

using the linear extension
((1,1),(1,0),(0,1),(0,0)).

That is, toggle in the order “top, left, right, bottom".



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 x 2-rectangle:

original labelling f | labelling T(y 1)f
1 1

| |
z (x+y)
o 2
v \W/
1 |
1

We are USing PB = T(070) o T(O,l) (¢] T(170) o) T(L]_).



Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2 x 2-rectangle:
original labelling f | labelling T(; o) T(1.0)f
1 1

(X+y)
/ \
/
N/ e,

| \ /
1
!

We are using pg = T(0,0)© T(0,1)° T(1,00© T(1,1)-



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 x 2-rectangle:

original labelling f

labelling T(o.1) T(1,0) T,y f

1

|
/ \

N/
!

1
|

(x+y)
VRN
w(x+y) w(x+y)
z vz
NS
w

|
1

We are using pg = T(00)© T(0,1)© T(1,0)© T(1,1)-



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 x 2-rectangle:

original labelling f | labelling T(0.0y T(0,1) T(1.0) Ta.)f = pBf

1 1
| |
/Z \ (x+y)
Xy VAN
\ / wixty) wixty)
w

| Xz\l/yz

1

= — N

We are using pg = T(o,o) o T(o,1) o 7_(1,0) o T(l,l)-



Birational rowmotion orbit on a product of chains

Example: lterating this procedure we get

xty) (xty)w
z Xy
RN
pf = b Cety)w 2o 1 7N 1
Xz yz B y
N, AN
z ’ x+y ’
1 z
p?éf: yz / \ xz p‘éf: X/ \y




Birational rowmotion orbit on a product of chains

Example: lterating this procedure we get

xty) (xty)w
z Xy
RN
pf = b Cety)w 2o 1 7N 1
Xz yz B y
N, AN
z ’ x+y ’
1 z
p?éf: yz / \ xz p‘éf: X/ \y

Notice that pf = f, which generalizes to pi™*"?f = f for
P =10, r] x [0, s] [Grinberg-R 2015]. Notice also “antipodal
reciprocity”.



Why study this generalization?

Motivations and Connections

@ Classical rowmotion is closely related to the Auslander-Reiten
translation in quivers arising in certain special posets (e.g.,
rectangles) [Yil17].

@ This generalization implies the results at the PL and
combinatorial level (but not vice-versa).

@ Birational rowmotion can be related to Y-systems of type
Am %X A, described in Zamolodchikov periodicity [Rob16, §4.4].

@ The orbits of these actions all have natural homomesic
statistics [PrRo15, EiPrl3, EiPr14].

@ Periodicity of these systems is generally nontrivial to prove.



Birational homomesy on files of J([0, r] x [0, s]

The poset [0, 1] x [0, 1] has three files, {(1,0)}, {(0,0),(1,1)}, and
{(0,1)}.

Multiplying over all iterates of birational rowmotion in a given file,
we get

pa(F)(L.OAN)L. 0NN L.0) = T2 L

(X) =1,



Birational homomesy on files of J([0, r] x [0, s]

The poset [0, 1] x [0, 1] has three files, {(1,0)}, {(0,0),(1,1)}, and
{(0,1)}.

Multiplying over all iterates of birational rowmotion in a given file,
we get

pe(F)(L 0)A(F)(L 0)pb(F)(L 0y ()(1,0) = W L2

xz oy (x+y)w I =1.

pe(f)(0,0)ps(F)(1,1)p5(f)(0,0)p5(f)(L, 1)pa(F)(0,0)p5(f)(1,1)pi(f)(0,0)p5(f)(1,1) =

1 x+y z (x+y)w Xy 1
1ty 2 L @-=1
y xy (x+yw ow




Birational homomesy on files of J([0, r] x [0, s]

The poset [0, 1] x [0, 1] has three files, {(1,0)}, {(0,0),(1,1)}, and
{(0,1)}.

Multiplying over all iterates of birational rowmotion in a given file,
we get

pe(F)(L 0)A(F)(L 0)pb(F)(L 0y ()(1,0) = W L2

xz oy (x+y)w I =1.

pe(f)(0,0)ps(F)(1,1)p5(f)(0,0)p5(f)(L, 1)pa(F)(0,0)p5(f)(1,1)pi(f)(0,0)p5(f)(1,1) =

1 x+y z (x+y)w Xy 1
1ty 2 L @-=1
y xy (x+yw ow

pwmwﬁmm%mmmwmﬁ=wzmiuﬁm

(y)=1



Birational homomesy on files of J([0, r] x [0, s]

The poset [0, 1] x [0, 1] has three files, {(1,0)}, {(0,0),(1,1)}, and
{(0,1)}.

Multiplying over all iterates of birational rowmotion in a given file,
we get

pa(F)(L.OA()L.OANL. (1.0 = T2 L2

(X) =1,
pa(£)(0,0)p5(F)(1,1)pz(£)(0,0)pz(£)(1,1)pz()(0,0)p3(F)(1,1)pE()(0,0)pE()(1,1) =

1 x+y z (x+y)w Xy 1
1ty 2 1 (@=1
y xy o (x+y)w w

pwmwﬁmm%mmmwMM=wZMiuﬁm

(y)=1

Each of these products equalling one is the manifestation, for the

poset of a product of two chains, of homomesy along files at the
birational level.



Birational homomesy on files of J([0, r] x [0, s]

Theorem ([GrRo15b, Thm. 30, 32])

(1) The birational rowmotion map pg on the product of two chains
P =10, r] x [0, s] is periodic, with period r + s + 2.

(2) The birational rowmotion map pg on the product of two chains
= [0, r] x [0, s] satisties the following reciprocity:
i+j+1 . .
g =1/pg(r—is—j)= X ,-1s_j

S
|
|
X
o
|
5\

Theorem (Musiker-R [MR18])
r+s+1

Given a file F in [0, r] x [0, s], H H pE(ij) = 1.

=0 (ij)eF




Birational homomesy on files of J([0, r] x [0, s]

Theorem ([GrRo15b, Thm. 30, 32])

(1) The birational rowmotion map pg on the product of two chains
P =10, r] x [0, s] is periodic, with period r + s + 2.

(2) The birational rowmotion map pg on the product of two chains
= [0, r] x [0, s] satisties the following reciprocity:
i+j+1 . .
g =1/pg(r—is—j)= X ,-1s_j

S
|
|
X
o
|
5\

Theorem (Musiker-R [MR18])
r+s+1

Given a file F in [0, r] x [0, s], H H pE(ij) = 1.

=0 (ij)eF

v

The proof of this involves constructing a complicated formula for the
pffg in terms of families of non-intersecting lattice paths, from which
one can also deduce periodicity and the other geometric homomesies
of this action, first proved by Grinberg-R [GrRo15b, ].



The final slide of this talk (before the references)

I'm happy to talk about this further with anyone who's interested.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/ troby/research.html
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The final slide of this talk (before the references)

I'm happy to talk about this further with anyone who's interested.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/ troby/research.html

Thanks very much for coming to this talk!


http://www.math.uconn.edu/~troby/research.html
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