
Dynamical Algebraic Combinatorics and
the Homomesy Phenomenon on

Independent Sets of a Path Graph and on
Permutations

Tom Roby (UConn)
Describing joint research with

Michael Joseph & Michael LaCroix

Tsuda University
Kodaira-shi, Tokyo JAPAN

2 March 2018 (Friday)

Slides for this talk are available online (or will be soon) at
http://www.math.uconn.edu/~troby/research.html

http://www.math.uconn.edu/~troby/research.html


Dynamical Algebraic Combinatorics and
the Homomesy Phenomenon on

Independent Sets of a Path Graph and on
Permutations

Tom Roby (UConn)
Describing joint research with

Michael Joseph & Michael LaCroix

Tsuda University
Kodaira-shi, Tokyo JAPAN

2 March 2018 (Friday)

Slides for this talk are available online (or will be soon) at
http://www.math.uconn.edu/~troby/research.html

http://www.math.uconn.edu/~troby/research.html


Abstract

Abstract: Given a group acting on a finite set of combinatorial
objects, one can often find natural statistics on these objects which
are homomesic, i.e., over each orbit of the action, the average value
of the statistic is the same. Since the notion was codified a few years
ago, homomesic statistics have been uncovered in a wide variety of
situations within dynamical algebraic combinatorics. We discuss a
couple of interesting examples in depth, including “Coxeter toggling”
the independent sets in a path graph (joint work with Michael
Joseph), and “Foatic actions” on Sn (joint work with Michael
LaCroix).
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Cyclic Rotation of bitstrings (or k-subsets);
Actions, orbits, and homomesy;
Toggling Independent Sets of a Path Graph;
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Cyclic rotation of binary strings

Let
([n]
k

)
be the set of length n binary strings with k 1s.

Let CR :
([n]
k

)
→

([n]
k

)
be rightward cyclic rotation.

Example
n = 6, k = 2

101000 7−→ 010100
CR



Cyclic rotation of binary strings

An inversion of a binary string is a pair of positions (i , j) with i < j
such that there is a 1 in position i and a 0 in position j .

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2
100010 5 000011 0
010001 3 100001 4

Average 4 Average 4 Average 4
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Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic") f : S → K where K is a field of
characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a
constant c ∈ K such that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c.

In this case, we say that the function f is homomesic with average
c (also called c-mesic) under the action of τ on S .
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Homomesy

Theorem (Propp & R.[PrRo15, §2.3])

Let inv(s) denote the number of inversions of s ∈
([n]
k

)
.

Then the function inv :
([n]
k

)
→ Q is homomesic with average

k(n−k)
2 with respect to cyclic rotation on Sn,k .

Proof.
Consider superorbits of length n. Show that replacing “01" with
“10" in a string s leaves the total number of inversions in the
superorbit generated by s unchanged (and thus the average since our
superorbits all have the same length).
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Cyclic rotation of binary strings

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2 100100 6
100010 5 000011 0 010010 4
010001 3 100001 4 001001 2
Average 4 Average 4 Average 4



Cyclic rotation of binary strings

Example

Inversions
String String Change
101000 011000 -1
010100 001100 -1
001010 000110 -1
000101 000011 -1
100010 100001 -1
010001 110000 +5



Homomesy

Since its initial codification about 5 years ago, a large number of
examples of the homomesy phenomenon have been identified across
dynamical algebraic combinatorics. These include:

Promotion of SSYT; Rowmotion of “nice” (e.g., minuscule
heap) posets [PrRo15, StWi11, Had14, RuWa15+] ;

In general, composing certain involutions called “toggles” on the
set leads to operations with interesting homomesy [Str15+];
Toggling the “arcs” in noncrossing partitions [E+15+];
Whirling functions between finite sets: injections, surjections,
parking functions, etc. [JPR17+]; and
Liftings of homomesy from combinatorial actions to piecewise
linear and birational maps [EiPr13, GrRo16, GrRo15b].
There are many others, including the next two examples.
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Toggling Independent
Sets of Path Graphs



Independent Sets of a Path Graph

Definition
An independent set of a graph is a subset of the vertices that does
not contain any adjacent pair.

Let In denote the set of independent sets of the n-vertex path graph
Pn. We usually refer to an independent set by its binary
representation.

Example
is written 1010100.

In this case, In refers to all binary strings with length n that do not
contain the subsequence 11.
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Toggles

Definition (Striker - generalized earlier concept of Cameron
and Fon-der-Flaass)

For 1 ≤ i ≤ n, the map τi : In → In, the toggle at vertex i is
defined in the following way. Given S ∈ In:

if i ∈ S , τi removes i from S ,
if i ̸∈ S , τi adds i to S , if S ∪ {i} is still independent,
otherwise, τi (S) = S .

Formally,

τi (S) =


S \ {i} if i ∈ S
S ∪ {i} if i ̸∈ S and S ∪ {i} ∈ In
S if i ̸∈ S and S ∪ {i} ̸∈ In

.



Toggles

Proposition

Each toggle τi is an involution, i.e., τ2
i is the identity. Also, τi and τj

commute if and only if |i − j | ≠ 1.

Definition
The toggle group is the group generated by the n toggles.

Definition
Let φ := τn ◦ · · · ◦ τ2 ◦ τ1, which applies the toggles left to right.

Example

In I5, φ(10010) = 01001 by the following steps:

10010 τ17−→ 00010 τ27−→ 01010 τ37−→ 01010 τ47−→ 01000 τ57−→ 01001.



Homomesy

Here is an example φ-orbit in I7, containing 1010100. In this case,
φ10(S) = S .

1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1

Total: 4 2 3 2 3 2 4
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Theorem (Joseph-R.[JoRo18])

Define χi : In → {0, 1} to be the indicator function of vertex i .

For 1 ≤ i ≤ n, χi − χn+1−i is 0-mesic on φ-orbits of In.
Also 2χ1 + χ2 and χn−1 + 2χn are 1-mesic on φ-orbits of In.
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Idea of the proof that χi − χn+1−i is 0-mesic: Given a 1 in an “orbit board”, if
the 1 is not in the right column, then there is a 1 either

2 spaces to the right,
or 1 space diagonally down and right,

and never both.
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Idea of the proof that χi − χn+1−i is 0-mesic: This allows us to partition the
1’s in the orbit board into snakes that begin in the left column and end in the
right column.

This technique is similar to one used by Shahrzad Haddadan to prove homomesy
in orbits of an invertible map called “winching” on k-element subsets of
{1, 2, . . . , n}.
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Idea of the proof that χi − χn+1−i is 0-mesic: Each snake corresponds to a
composition of n − 1 into parts 1 and 2. Also, any snake determines the orbit!

1 refers to 1 space diagonally down and right
2 refers to 2 spaces to the right
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Red snake composition: 221121
Purple snake composition: 211212
Orange snake composition: 112122
Green snake composition: 121221
Blue snake composition: 212211

Brown snake composition: 122112



More Consequences of Snakes

Besides homomesy, this snake representation can be used to explain
a lot about the orbits (particularly the orbit sizes, i.e. the number of
independent sets in an orbit).

When n is even, all orbits have odd size.
“Most” orbits in In have size congruent to 3(n − 1) mod 4.
The number of orbits of In (OEIS A000358)
And much more...

Using Coxeter theory, it’s possible to extend our main theorem to
other “Coxeter elements” of toggles. We get the same homomesy if
we toggle exactly once at each vertex in any order.



Foatic actions on Sn



The Rényi-Foata (Drop Parentheses) Map

Definition

For w ∈ Sn, its canonical (disjoint) cycle decomposition
(CCD) satisfies:
(a) each cycle is written with its largest element first; and
(b) the cycles are written in increasing order of largest element.
The map F : Sn → Sn simply removes the parentheses from the
CCD of w and regards the resulting word as a permutation in
one-line notation.

w = 847296513 = (42)(6)(81)(9375) F7→ 426819375 = (2)(951487369),

Note that here w has 4 cycles, and F(w) has 4 records (i.e.,
left-to-right maxima) viz., 4, 6, 8, and 9.

It is easy to see that F is a bijection.



Foatic Actions of Sn

We consider actions Sn of the following form:

Sn
F→ Sn

A→ Sn
F−1
→ Sn

B→ Sn

where A and B are dihedral involutions, defined below.

a C : Sn → Sn, which takes a permutation w = w1 . . .wn to its
complement whose value in position i is n + 1 − wi ;

b R : Sn → Sn, which takes a permutation w = w1 . . .wn to its
reversal whose value in position i is wn+1−i ;

c Q2 : Sn → Sn, which takes a permutation w = w1 . . .wn to
its rotation by 180-degrees, whose value in position i is
n + 1 − wn+1−i .

d I : Sn → Sn, which takes a permutation w to its inverse
w−1;

e D : Sn → Sn, which takes a permutation w to its its
rotated-inverse Q2(I(w)).

We call such fourfold compositions, where A and B are from the
above list, Foatic.



Foatic example

A = C and B = I gives the Foatic map γ := I ◦F−1 ◦ C ◦F .
If n = 5, then γ[(4213)(5)] = (2)(4)(513) as follows

(4213)(5) F7→ 42135 C7→ 24531 F−1
7→ (2)(4)(531) I7→ (2)(4)(513)

The orbit (of size six) generated by (4213)(5) is

(4213)(5)
γ7→ (2)(4)(513)

γ7→ (412)(53)
γ7→ (2)(5314)

γ7→ (431)(52)
γ7→ (2)(3)(541)

Define the statistic “Fixw ” to count the number of fixed points
(equiv. 1-cycles) of w .

Theorem (Sheridan-Rossi–R.)

The statistic Fix is homomesic with respect to the Foatic
complement-inversion action on Sn.
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Reversal-Inversion

The Foatic action with the nicest orbit structures and properties
appears to be Reversal-Inversion:

φ : Sn
F→ Sn

R→ Sn
F−1
→ Sn

I→ Sn.

φ : Sn
R→ Sn

F−1
→ Sn

I→ Sn.
F→ Sn

w =(2)(43)(51) 7→ 24351 7→ 15342 7→ (1)(5342) 7→ (1)(5243) = φ(w)

(1)(5243) 7→ 15243 7→ 34251 7→ (3)(42)(51) 7→ (3)(42)(51) = φ2(w)

(3)(42)(51) 7→ 34251 7→ 15243 7→ (1)(5243) 7→ (1)(5342) = φ3(w)

(1)(5342) 7→ 15342 7→ 24351 7→ (2)(43)(51) 7→ (2)(43)(51) = φ4(w)

This example also displays (down the second column) the conjugate
orbit of φ, also of size 4.

24351
φ→ 15243

φ→ 34251
φ→ 15342 ↰



Data on Orbit Sizes for Foatic Reversal-Inversion

n 1 2 3 4 5 6 7 8 9 10 11
# of orbits: 1 1 2 5 19 84 448 2884 21196 174160 1598576
LCM of orbit sizes: 1 2 4 8 16 32 64 128 256 512 1024
GCD of orbit sizes: 1 2 2 4 4 4 4 8 8 8 8
Longest orbit size: 1 2 4 8 16 32 64 128 256 512 1024
Shortest orbit size: 1 2 2 4 4 4 4 8 8 8 8
Size of id’s orbit: 1 2 4 8 16 32 64 128 256 512 1024



Heap representation of a permutation

Definition

Recursively define the heap of w ∈ Sn, H(w) as follows: Set
H(∅) = ∅ (the empty word). If w ̸= ∅, let m be the largest element
of w , so w can be written uniquely as umv , where u and v are
partial permutations (possibly empty). Set m to be the root of
H(w), with H(u) its left subtree and H(v) its right subtree.

The heap of a permutation will turn out to be a decreasing binary
tree, (labels decrease along any path from root).

The heap associated with w = 314975826 is shown below.
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2

7
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4

3

1



Orbits represented as heaps

Two orbits (one for S7, one for S9) of the Foatic reversal-inversion
map φ with associated heaps, with fixed points marked in red. Each
orbit has an average of one fixed point per permutation.

32

4

1

5

6

7

(7 1 5 6 2 4 3) 1

5

23

4

6

7

(3)(4 2)(6 1 5)(7)

1

5

23

4

6

7

(7 3 4 2 6 1 5)

23

4

1

5

6

7

(5 1)(6 3 4 2)(7)23

4

1

5

6

7

(7 5 1 6 3 4 2)

1

5

32

4

6

7

(2)(4 3)(6 5 1)(7)

1

5

32

4

6

7

(7 2 4 3 6 5 1)

32

4

1

5

6

7

(1)(5)(6 2 4 3)(7)

7

5

6

8

21

3

4

9

(1)(3 2)(4)(9 5 6 8 7) 21

3

4

5

67

8

9

(7)(8 5 6)(9 1 3 2 4)

5

67

8

21

3

4

9

(4 1 3 2)(9 7 8 5 6)

21

3

4

7

5

6

8

9

(6 5)(8 7)(9 4 1 3 2)

7

5

6

8

12

3

4

9

(2)(3 1)(4)(9 6 5 8 7)

12

3

4

5

67

8

9

(7)(8 6 5)(9 2 3 1 4)

5

67

8

12

3

4

9

(4 2 3 1)(9 7 8 6 5)

12

3

4

7

5

6

8

9

(5)(6)(8 7)(9 4 2 3 1)



Reversal-Inversion Results

Theorem (LaCroix-R.)

The orbits of the action of φ (or φ) on Sn, satisfy the following:

1 The size of a φ-orbit O (equivalently φ-orbit) is 2h, where h is
the number of edges in a maximal path from the root (to a
leaf) for any w ∈ O.

2 Let Fixw denote the number of fixed points, i.e., 1-cycles, of
w . Then the statistic Fix is 1-mesic with respect to the action
of φ; (Equivalently, Rasc =#record-ascents is 1-mesic with
respect action of φ.)

3 For fixed i ̸= j in [n], let 1i<j(u) denote the indicator statistic
of whether i occurs to the left of j in the one-line notation of u.
Then 1i<j is 1

2 -mesic with respect to the action of φ.
4 Similarly for fixed i ∈ [n], let 1(i ,n) denote the indicator statistic

of whether i and n lie in the same cycle of w . Then 1(i ,n) is
1
2 -mesic with respect to the action of φ.



Reveral-Inversion Recursion (Key Lemma)

All the results listed above follow without difficulty from the
following key lemma.

Lemma

Let w ∈ Sn have the form AnB (in one-line notation), where A and
B are (possibly empty) partial permutations of n. Then the action of
φ satisfies φ(AnB) = φ(B)nA. Thus, H(φ(AnB)) is the heap
interchanging the left and right subtrees at v , leaving the former
unchanged and applying φ recursively to the latter. In particular, the
action of φ preserves the underlying unlabeled graph of the
corresponding heaps.



The final slide of this talk (before the references)

We’re happy to talk about this further with anyone who’s interested.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

Thanks very much for coming to this talk!

どうも有り難う御座いました。

http://www.math.uconn.edu/~troby/research.html
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Bulgarian Solitaire
Bonus Slides

(because you asked!)



Example 2: Bulgarian solitaire

Given a way of dividing n identical chips into one or more heaps
(represented as a partition λ of n), define b(λ) as the partition of n
that results from removing a chip from each heap and putting all the
removed chips into a new heap.

First surfaced as a puzzle in Russia around 1980, and a solution
by Andrei Toom in Kvant; later popularized in 1983 Martin
Gardner column; see survey of Brian Hopkins [?].
Initial puzzle: starting from any of 176 partitions of 15, one
ends at (5, 4, 3, 2, 1).

Dynamical Algebraic Combinatorics and the Homomesy Phenomenon 7

and placing them together to form a new pile. We set (l ) to be the partition obtained in this way, whose parts are the
nonzero elements among `,l1�1,l2�1, . . . ,l`�1. Note that the newly created part of size ` can range in size from 1
to n, making it hard to write a concise formula for (l ) in terms of the parts of l .

Example 8. Bulgarian solitaire For n = 15, one trajectory of Bulgarian solitaire is:

115 15 14,1 13,2 12,2,1 11,3,1

10,3,29,3,2,18,4,2,17,4,3,17,4,3,16,4,3,25,4,3,2,1

This process first surfaced as a puzzle in Russia around 1980, and a solution by Andrei Toom was published in
Kvant [Too81]. A few years later it was popularized in one of Martin Gardner’s Mathematical Games columns [Gard83].
The puzzle was to show that no matter which of the 176 partitions of 15 one selects for the initial sizes of the piles,
one always eventually ends up at the “staircase” partition (5,4,3,2,1), which is a fixed point of the action (as in the
above example). It turns out that if n is a triangular number (so such a staircase partition exists), then any sequence
of moves eventually leads to this fixed point of the action; however, in general the action can exhibit more complex
dynamical behavior. (See Figure 2.) Some pointers to more recent literature and more information about the history of
this problem, including the fanciful, inaccurate (but easily googlable) name, are available in Brian Hopkins’s expository
survey [Hop12].
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Fig. 2: The action of Bulgarian solitaire on partitions of n = 8

Definition 2. Let S be a finite set with a (not necessarily invertible) map t : S !S (called a self-map). Applying
the map iteratively to any x 2S eventually yields a recurrent cycle, and the recurrent set is the union of these cycles.
(See Figure 2.) We call a statistic f : S !K homomesic if the average of f is the same over every recurrent cycle. It
is clear that if t is an invertible action on a finite set S, then this definition specializes to the original one.

Example 9. Number of parts under Bulgarian solitaire on partitions of nnn Consider the example of Bulgarian
solitaire for n = 8 as displayed in Figure 2. Let the statistic f (l ) := `(l ), the number of parts. We claim that this is



Bulgarian solitaire: homomesies

E.g., for n = 8, two trajectories are

53 → 422 → 3311 → 422 → . . .

and

62 → 521 → 431 → 332 → 3221 → 4211 → 431 → . . .

(the new heaps are underlined).
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Definition 2. Let S be a finite set with a (not necessarily invertible) map t : S !S (called a self-map). Applying
the map iteratively to any x 2S eventually yields a recurrent cycle, and the recurrent set is the union of these cycles.
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Let φ(λ) be the number of parts of λ. In the forward orbit of λ = (5, 3),
the average value of φ is (4 + 3)/2 = 7/2; while for λ = (6, 2), the
average value of φ is (3 + 4 + 4 + 3)/4 = 14/4 = 7/2.

Proposition (“Bulgarian Solitaire has homomesic number of parts”)

If n = k(k − 1)/2 + j with 0 ≤ j < k , then for every partition λ of n, the
ergodic average of φ on the forward orbit of λ is k − 1 + j/k .

(n = 8 corresponds to k = 4, j = 2.) So the number-of-parts statistic on
partitions of n is homomesic b; similarly for “size of (kth) largest part”.



Ignoring transience

Since S is finite, every forward orbit is eventually periodic, and the
ergodic average of φ for the forward orbit that starts at x is just the
average of φ over the periodic orbit that x eventually goes into.

So an equivalent way of stating our main definition in this case is, φ
is homomesic with respect to (S , τ) iff the average of φ over each
periodic τ -orbit O is the same for all O.

In the rest of this talk, we’ll restrict attention to maps τ that are
invertible on S , so transience is not an issue.

Definition ([PrRo15])

Given an (invertible) action τ on a finite set of objects S , call a
statistic f : S → C homomesic with respect to (S , τ) if the
average of f over each τ -orbit O is the same constant c for all O,

i.e.,
1

#O
∑
s∈O

f (s) = c does not depend on the choice of O.

(Call f c-mesic for short.)
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