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Abstract

Abstract: After briefly describing a Bulgaria Scene, we present some older and newer results
about the dynamics of the rowmotion map on finite posets, including some by the Incurable
Sage, who from his time as a young Genius Cal Bear cub has continually come up with exciting
Algebraic Nuse.
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Some themes in dynamical algebraic combinatorics

1 Periodicity/order;

2 Orbit structure;

3 Homomesy;

4 Equivariant bijections; and

5 Lifting from combinatorial to piecewise-linear and birational settings.



Cyclic rotation of

binary strings
“Immer mit den einfachsten Beispielen anfangen.” — David Hilbert



Cyclic rotation of binary strings

Let Sn,k be the set of length n binary strings with k 1s.
Let CR : Sn,k → Sn,k be rightward cyclic rotation.

Example
Cyclic rotation for n = 6, k = 2:

101000 7−→ 010100
CR

Periodicity is clear here. The map has order n = 6.
Orbit structure is very nice; every orbit size must divide n.
Homomesy? Need a statistic, first.
Equivariant bijection? No need.
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Cyclic rotation of binary strings

An inversion of a binary string is a pair of positions (i , j) with i < j such that there is a
1 in position i and a 0 in position j .

Example
Orbits of cyclic rotation for n = 6, k = 2:

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2
100010 5 000011 0
010001 3 100001 4

Average 4 Average 4 Average 4
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Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic”) f : S → K where K is a field of characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a constant c ∈ K such
that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c .

In this case, we say that the function f is homomesic with average c (also called
c-mesic) under the action of τ on S .
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Homomesy

Theorem (Propp & R. [PrRo15, §2.3])

Let inv(s) denote the number of inversions of s ∈ Sn,k .

Then the function inv : Sn,k → Q is homomesic with average k(n−k)
2 with respect to

cyclic rotation on Sn,k .

Proof.
Consider superorbits of length n. Show that replacing “01” with “10” in a string s leaves
the total number of inversions in the superorbit generated by s unchanged (and thus the
average since our superorbits all have the same length).
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Cyclic rotation of binary strings

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
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Cyclic rotation of binary strings

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2 100100 6
100010 5 000011 0 010010 4
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Cyclic rotation of binary strings

Example

Inversions
String String Change
101000 011000 -1
010100 001100 -1
001010 000110 -1
000101 000011 -1
100010 100001 -1
010001 110000 +5

There are other homomesic statistics as well:
Let χj(s) := sj , the jth bit of the string s. Can you see why this is homomesic under
cyclic rotation?



Homomesy

Since its initial codification about 5 years ago, a large number of examples of the
homomesy phenomenon have been identified across dynamical algebraic combinatorics.
These include:

Promotion of rectangular SSYT [BlPeSa13];

Rowmotion of various “nice” posets (e.g., Lie theoretic root and minuscule posets,
fences, “Chain of V’s”) [PrRo15, StWi11, Had14, RuWa15+, EPRS23];
In general, composing certain involutions called “toggles” on the set leads to
operations with interesting homomesy [Str18];
Toggling the “arcs” in noncrossing partitions [EFGJMPR16];
Whirling functions between finite sets: injections, surjections, parking functions,
etc. [JPR17+]; and
Liftings of dynamics from combinatorial to piecewise linear and to birational maps
(even with noncommuting variables) [EiPr21, GR16, GR15, JR20, JR21, GR23].
There are many others still being discovered.
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Bulgarian Solitaire



Homomesy: A more general definition

There are some cases where we find a similar phenomenon, but where the map no longer
has finite orbits. Here is a more general definition of homomesy that is useful for some
purposes.

Definition

Let τ be an self-map on a discrete set of objects S , and f be a statistic on S . We say f
is homomesic if the value of

lim
N→∞

1
N

N−1∑
i=0

f (τ i (x)) = c

is independent of the starting point x ∈ S . (Also, f is c-mesic.)

This clearly reduces to the earlier definition in the case where we have an invertible
action with finite orbits.



Example 2: Bulgarian solitaire

Given a division of n identical pebble into one or more heaps (represented as a partition λ
of n), define b(λ) as the partition of n that results from removing a pebble from each
heap and putting all the removed pebbles into a new heap.

First surfaced as a puzzle in Russia around 1980, with a solution by Andrei Toom in
Kvant; later popularized in 1983 Martin Gardner column; see survey of Brian
Hopkins [Hop12].
Original puzzle: starting from any of 176 partitions of 15, what happens when you
iterate this process.
Audience Participation: Since time is short, let’s start with ten pebbles. Pick your
own starting position. (I’ll start from 3, 2, 2, 1, 1, 1.)

What happened? My sequence was:
32111 7→ 6211 7→ 541 7→ 433 7→ 3322 7→ 42211 7→ 5311 7→ 442
7→ 3331 7→ 4222 7→ 43111 7→ 532 7→ 4321 7→ 4321 7→ itself.
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Bulgarian solitaire: “orbits” are now “trajectories”
Here’s one trajectory for the original n = 15 puzzle:

Dynamical Algebraic Combinatorics and the Homomesy Phenomenon 7

and placing them together to form a new pile. We set (l ) to be the partition obtained in this way, whose parts are the
nonzero elements among `,l1�1,l2�1, . . . ,l`�1. Note that the newly created part of size ` can range in size from 1
to n, making it hard to write a concise formula for (l ) in terms of the parts of l .

Example 8. Bulgarian solitaire For n = 15, one trajectory of Bulgarian solitaire is:

115 15 14,1 13,2 12,2,1 11,3,1

10,3,29,3,2,18,4,2,17,4,3,17,4,3,16,4,3,25,4,3,2,1

This process first surfaced as a puzzle in Russia around 1980, and a solution by Andrei Toom was published in
Kvant [Too81]. A few years later it was popularized in one of Martin Gardner’s Mathematical Games columns [Gard83].
The puzzle was to show that no matter which of the 176 partitions of 15 one selects for the initial sizes of the piles,
one always eventually ends up at the “staircase” partition (5,4,3,2,1), which is a fixed point of the action (as in the
above example). It turns out that if n is a triangular number (so such a staircase partition exists), then any sequence
of moves eventually leads to this fixed point of the action; however, in general the action can exhibit more complex
dynamical behavior. (See Figure 2.) Some pointers to more recent literature and more information about the history of
this problem, including the fanciful, inaccurate (but easily googlable) name, are available in Brian Hopkins’s expository
survey [Hop12].

11111111 8 71
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32111 4211

332

3221

44511122211
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Fig. 2: The action of Bulgarian solitaire on partitions of n = 8

Definition 2. Let S be a finite set with a (not necessarily invertible) map t : S !S (called a self-map). Applying
the map iteratively to any x 2S eventually yields a recurrent cycle, and the recurrent set is the union of these cycles.
(See Figure 2.) We call a statistic f : S !K homomesic if the average of f is the same over every recurrent cycle. It
is clear that if t is an invertible action on a finite set S, then this definition specializes to the original one.

Example 9. Number of parts under Bulgarian solitaire on partitions of nnn Consider the example of Bulgarian
solitaire for n = 8 as displayed in Figure 2. Let the statistic f (l ) := `(l ), the number of parts. We claim that this is

Here’s the entire dynamics for n = 8, with 2 connected components.
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Let φ(λ) be the number of parts of λ. In the forward orbit of λ = (5, 3), the average value of φ is
(4 + 3)/2 = 7/2; while for λ = (6, 2), the average value of φ is (3 + 4 + 4 + 3)/4 = 14/4 = 7/2.

Proposition (“Bulgarian Solitaire has homomesic number of parts”)

If n = k(k − 1)/2 + j with 0 ≤ j < k , then for every partition λ of n, the ergodic average of φ
on the forward orbit of λ is k − 1 + j/k .

(n = 8 corresponds to k = 4, j = 2.) So the number-of-parts statistic on partitions of n is
homomesic wrt/b; similarly for “size of (kth) largest part”.



Further work on non-invertible maps and possible directions

Colin Defant has done some work on non-invertible maps that are variants of pop-stack
sorting (including a dual version called pop-tsack torsing) [Def21+]. In his talk on this at
the BIRS-DAC workshop at UBCO, he highlighted the following questions:

Let f : X → X be a noninvertible map on a finite set X . Define the forward orbit of
x ∈ X to be Of (X ) := {x , f (x), f 2(x), . . . }.

What are the periodic points of f ?
What is the image of f ?
How can we compute the number of preimages of some x0 ∈ X under f ?
What is the maximum number of preimages an element of X can have?
How many elements have exactly 1 preimage?
What is maxx∈X #Of (X )? For which x is the max attained?
Which elements x ∈ X maximize Of (X )?
How big is Of (X ) on average?



Ignore transience (for the rest of this talk)

Since S is finite, every forward orbit is eventually periodic, and the ergodic average of φ
for the forward orbit that starts at x is just the average of φ over the periodic orbit that
x eventually goes into.

This definition also works in situations where S is infinite. But for rest of this talk, we’ll
restrict attention to maps τ that are invertible on S , where S is finite, so our initial
definition (below) makes sense.

Definition ([PrRo15])

Given an (invertible) action τ on a finite set of objects S , call a statistic f : S → C
homomesic with respect to (S , τ) if the average of f over each τ -orbit O is the same

constant c for all O, i.e.,
1

#O
∑
s∈O

f (s) = c does not depend on the choice of O.

(Call f c-mesic for short.)
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Rowmotion on Order

Ideals of a Poset



Rowmotion: an invertible operation on order ideals

We define the (cyclic) group action of rowmotion on the set of order ideals J (P) via
the map Row : J (P) → J (P) given by the following three-step process.

Start with an order ideal, and

1 Θ: Take the complement (giving an order filter)
2 ∇: Take the minimal elements (giving an antichain)
3 ∆−1: Saturate downward (giving a order ideal )

# #

ρJ :  # # −→

  

  

#   −→

# #

# #

#   −→

# #

# #

#   

  

This map and its inverse have been considered with varying degrees of generality, by many
people more or less independently (using a variety of nomenclatures and notations): Duchet,
Brouwer and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and
Striker and Williams, who named it rowmotion.
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Dynamical properties of rowmotion: cardinality is homomesic

Theorem (Brouwer–Schrijver 1974)

On [a]× [b], rowmotion is periodic with period a+ b.

Theorem (Fon-Der-Flaass 1993)

On [a]× [b], every rowmotion orbit has length (a + b)/d , some d dividing both a and b.

Theorem (Propp, R.)

Let O be an arbitrary rowmotion orbit in J ([a]× [b]). Then

1
#O

∑
I∈O

#I =
ab

2
.
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Ideals in [a]× [b]: the case a = b = 2

We have an orbit of size 2 and an orbit of size 4:

2 2

0 1 3 4

Within each orbit, the average order ideal has cardinality ab/2 = 2.



Toggling order ideals

Cameron and Fond-Der-Flaass showed how to write rowmotion on order ideals
(equivalently order filters) as a product of simple involutions called toggles.

Definition (Cameron and Fon-Der-Flaass 1995)

Let J (P) be the set of order ideals of a finite poset P .
Let e ∈ P . Then the toggle corresponding to e is the map Te : J (P) → J (P) defined
by

Te(U) =


U ∪ {e} if e ̸∈ U and U ∪ {e} ∈ J (P),
U \ {e} if e ∈ U and U \ {e} ∈ J (P),
U otherwise.

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom along a linear extension of P gives
rowmotion on order ideals of P .
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Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρ-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 4 + 3 + 1 + 2 + 4 + 3

8
=

5
2
;

0 + 3 + 5 + 6
4

=
7
2
;

2 + 1
2

=
3
2
. Darn!
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# # #

#

# # −→

   

#
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  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average rank-alternating cardinality for each orbit we find:
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

1 + 2 + 2 + 1
4

=
2 + 1

2
=

3
2

Yay!



Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan)

Let P be the root poset of type An. If we assign an element x ∈ P weight
wt(x) = (−1)rank(x), and assign an order ideal I ∈ J (P) weight f (I ) =

∑
x∈I wt(x),

then f is homomesic under rowmotion and promotion, with average n/2.



Ideals in [a]× [b]: the case a = b = 2

We have an orbit of size 2 and an orbit of size 4:

2 2

0 1 3 4

Within each orbit, the average order ideal has cardinality ab/2 = 2.



Ideals in [a]× [b]: file-cardinality is homomesic

1 1 0 0 1 1

0 0 0 0 1 0 1 1 1 1 2 1

Within each orbit, the average order ideal has

1/2 of a violet element, 1 red element, and 1/2 of a brown element.



Ideals in [a]× [b]: file-cardinality is homomesic

For 1 − b ≤ k ≤ a− 1, define the kth file of [a]× [b] as

{(i , j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, i − j = k}.

For 1 − b ≤ k ≤ a− 1, let hk(I ) be the number of elements of I in the kth file of
[a]× [b], so that #I =

∑
k hk(I ).

Theorem (Propp, R.)

For every ρ-orbit O in J([a]× [b]):

• 1
#O

∑
I∈O

hk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.

• 1
#O

∑
I∈O

#I =
ab

2
.



Some homomesies for (order-ideal) rowmotion on fence posets

Periodicity, orbit structure, and homomesy for rowmotion on fence posets was explored
in work of Elizalde–Plante–Roby–Sagan [EPRS23].

Average:1 Average:1 Average:1

Average:1 Average:12 Average:1

Jamie Kimble presented a poster last night for rowmotion on rooted trees, based on joint
work with Pranjal Dangwal, Jinting Liang, Jianzhi Lou, Bruce Sagan, and Zach Stewart.



One orbit of rowmotion on a fence poset, highlighting a homomesy

ρ−→ ρ−→

ρ−→ ρ−→ ρ−→

ρ−→ ρ−→ ρ−→

ρ−→

Checking the statistic we see 13−3
10 = 1



Whirling on posets



Definition of whirling on posets

Let Fk be the set of order-reversing functions from P to {0, 1, 2, . . . , k}.

P =

3 2
2

1 0
∈ F3(P)

Definition ([JPR18])

Let P be a poset. For f ∈ Fk(P) and x ∈ P define wx : Fk(P) → Fk(P), called the
whirl at x , as follows: repeatedly add 1 (mod k + 1) to the value of f (x) until we get a
function in Fk(P). This new function is wx(f ).

3 2
2

1 0
→

3 2
3

1 0
→

3 2
0

1 0
→

3 2
1

1 0
∈ F3(P)
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Equivariant bijection between whirling and rowmotion

Now let {x1, x2, . . . , xn} be any linear extension of P (with #P = n.) It is easy to show
that wx and wy commute when x , y ∈ P are incómparable. Thus the whirling operator
w := wx1wx2 · · ·wxn is well-defined (whirling each poset element from top to bottom).

Theorem (Plante)

There is an equivariant bijection between Fk (P) and J (P × [k]) which sends w to ρJ .

Example (J ([3]× [4]) to F4([3]))

−→
4

1
0

The number of order ideal elements in each fiber is recorded as an order-reversing
function on [3].



Product of two chains orbit bijection example

4
1

0

2
2

1

3
2

2

4
3

0

0
01 2

2 3 4

0 1 2
2 3 4

4

0 1 2
2
2 34

4
4

1

2
2

2

3
0

0



Product of two chains snake homomesy Revisited

Theorem (Plante)

Let w denote the whirling operator on order-reversing functions Fk([m]). Consider a
superorbit board of w with length k +m.

1 The board can be partitioned into m snakes of length k +m under the following
rules:

1 Start at zero in the top row.
2 Stay in a row until the value does not increase then move down.
3 End once the snake contains k in the bottom row.

2 Let (α1, α2, . . . , αm) be the segments of a snake α, that is, αi is the number of
blocks of the snake in row i . Each snake in the board has segments which are a
cyclic rotation of (α1, α2, . . . , αm).

3 The average sum of values along a snake is k(m + k)/2.

An orbit board of (0, 1, 4) ∈ F4([3]):
0
01 2

2 3 4

0 1 2
2 3 4

4

0 1 2
2
2 34



Orbits of a product of two chains

[3]× [3] =

The 4 orbits of F3([3]) under the action of w .

0
0
0 1 2 3

0
0 1 2 3

3

0 1 2 3
3
3

0
0 1

1 2 3

0 1
1 2 3

33

0 1 2
2
2

0 1
1
1 2 3

0
0 1 2

2 3

0 1 2
23

3

0 1
12

2 3
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Orbits of a product of two chains

[3]× [3] =

The 4 orbits of F3([3]) under the action of w .

0
0
0 1 2 3

0
0 1 2 3

3

0 1 2 3
3
3

0
0 1

1 2 3

0 1
1 2 3

33

0 1 2
2
2

0 1
1
1 2 3

0
0 1 2

2 3

0 1 2
23

3

0 1
1 2

2 3

0 1
1 2

2 3

0 1
12

2 3

(expanding the last orbit to a superorbit).



The V × [k] poset



The poset V × [k]

Let V be the three-element partially ordered set with Hasse diagram

ℓ

c

r

The poset of interest is V (k) := V × [k]

ℓ1

c1

r1

ℓ2

c2

r2

...
...

...

ℓk

ck

rk
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Order-ideal rowmotion on V × [k]

ρ−→ ρ−→ ρ−→ ρ−→ ρ−→

ρ−→ ρ−→ ρ−→ ρ−→ ρ−→

Theorem (Plante)

Order ideals of V (k) are reflected about the center chain after k + 2 iterations of ρ, and
furthermore, the order of ρ on order ideals of V (k) is 2(k + 2).
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Map to order-reversing functions on V

ℓ

c

r

1 Define Fk(V) = {(ℓ, c , r) ∈ {0, . . . , k}3 : ℓ, r ≤ c}.
2 Define ϕ : J (V(k)) → Fk(V) by ϕ(I ) =

(∑
χℓi ,

∑
χci ,

∑
χri

)
.

ϕ


 = (0, 3, 3) ↔ 0

3
3



Example of whirling V

We whirl the example
ℓ

c

r
first at ℓ, r , then c .

Start with (0, 2, 2) ∈ F2(V).

0

2

2
wℓ−→

1

2

2

1

2

2
wr−→

1

2

0

1

2

0
wc−→

1

0

0
→

1

1

0



Example of rowmotion orbit with triples

0
4

3

ρ−→

1
4

4

ρ−→

2
2

0

ρ−→

0
4

1

ρ−→

1
4

2

ρ−→

2
3

3

3
4
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Equivariant bijection example

Alternatively we may define w on (ℓ, c , r) ∈ Fk(V) as the process:
1 ℓ → ℓ+ 1 unless ℓ = c , then ℓ → 0.

2 Repeat step 1 with r instead of ℓ.
3 c → c + 1 unless c = k , then c → max(ℓ, r).

Corollary
The map ϕ is an equivariant bijection that sends ρ to w .

J (V(k))

Fk(V)

J (V(k))

Fk(V)

ρ

w

ϕ ϕ
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Periodicity

Theorem (Plante)

Order ideals of V (k) are reflected about the center chain after k + 2 iterations of ρ, and
furthermore, the order of ρ on order ideals of V (k) is 2(k + 2).

Direct inspection of order-reversing functions on V as tuples gives a straightforward proof
of periodicity.



Homomesy

Theorem (Plante)

For the action of rowmotion on order ideals of V(k):
1 The statistic χℓ1 + χr1 − χck is 2(k−1)

k+2 -mesic.

+1
0
+1

0
0

0

... ...

...

0
−1

0

.

2 The statistic χri − χℓi is 0-mesic
+1

0
−1

for each i = 1, . . . , k , where χx is the

indicator function.
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Center Seeking Snakes

We decompose the orbit board into 6 snakes of length k + 2. Or 2 two-tailed snakes if
the order-reversing functions are symmetric. Recall that snakes start at the top of a
poset and move down. Since the least element of V is in the center, we call these snakes,
center-seeking snakes.

1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0

0 0
1 1
2 2
3 33

40 0
1 11

2
3
4



Sketch of Proof of Homomesy

∑
χℓ1 + χr1 − χck

= (2(k+2)−3)+(2(k+2)−3)−6

Thus we see

4(k + 2)− 12
2(k + 2)

=
2k − 2
k + 2

.
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4 4
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4
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2 2
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2
3 3

4
0
1
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3
4
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

2(k + 2)



Back to the Future!

There is another nice looking homomesy for the “chain of V’s poset.” Let
Fi = χℓi + χri + χci−1 , which has the following flux-capacitor shape in V(k).

...

...

...

...

...

...

F3 − F2

Theorem (Plante)

The difference Fi − Fj is 3(i−j)
(k+2) -mesic with respect to rowmotion on V(k).



Flux Capacitor??

https://www.youtube.com/
watch?v=VcZe8_RZO8c
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Summary and Take Aways

Studying dynamics on objects in algebraic combinatorics is interesting, particularly
with regard to questions of periodicity/order, orbit structure, homomesy, and
equivariant bijections.
Actions that can be built out of smaller, simpler actions (toggles and whirls) often
have interesting and unexpected properties.
Much more remains to be explored, perhaps for combinatorial objects or actions that
you work with for other reasons.

Slides for this talk will be available online at

Google “Tom Roby”.

Thanks very much for coming to this talk!
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