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Increasing subsequences in permutations

A permutation w (on n) is an rearrangement of the numbers
1, 2, . . . n. We will think of permutations as “words” with no
repeated letters made from this alphabet.

For n = 3, there are six permutations: 123, 132, 213, 231, 312,
321. And in general, it’s easy to see that the number of
permutations on n is. . . n!

DEF by EG: 269 is an increasing subsequence of
w = 527361948. Are there any longer ones? Yes, e.g., 527361948,
and several others of size 4. Note that not every inc. subseq. of
size 3 can be completed to one of size 4.

lis(w) := length of the longest inc. subseq. of w = 4

lds(w) := length of the longest dec. subseq. of w = 3
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Airplane Boarding

Q: Why should we care about increasing subsequences?
A1: In a naive model of airplane boarding, there’s one seat per
row, and passengers board in some permuted order. It takes one
unit of time for those with higher numbers to wait behind those
with lower numbers.

For example, if the boarding order is w = 527361948, then
boarding proceeds:

Seats 9 8 7 6 5 4 3 2 1

Time 1 5 2736 1948

Time 2 7 36948

Time 3 69 48

Time 4 9 8
Easy: Total boarding time = lis(w).
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Patience Sorting

A2: Patience Sorting: Shuffle a deck of cards labeled 1, 2, . . . n,
turn up cards one-by-one, and sort them into piles according to the
rule:

A low card may be placed on a higher card (e.g., a 3 on a 6),
or may be placed on a new pile to the right of existing piles.

EG: If the order of the cards is w = 527361948, then we get the
following sequence of piles:

5 , 2
5 ,

2
5 7 ,

2 3
5 7 ,

2 3
5 7 6 ,

1
2 3
5 7 6

,
1
2 3
5 7 6 9

,
1
2 3 4
5 7 6 9

,
1
2 3 4 8
5 7 6 9

Easy: Minimum number of piles = lis(w) (greedily achievable).
Ref: D. Aldous & P. Diaconis: “Longest incr. subseq.: from
patience sorting to the Baik-Deift-Johansson thm., BAMS, 1999.



Permutation Patterns

A3: We’re combinatorialists—we’ll count anything!
Including permutation patterns (cf. Pudlow’s talk). The last two
decades have seen a surge in interest in enumerating and
understanding classes of permutations which avoid certain
subpatterns. This turns out to have surprising connections to
algebraic geometry, where avoidance of certain patterns turns up in
interesting decompositions of certain varieties (“Schubert
Calculus”, Knutson’s talk).

Schensted was 30 years ahead of his time in studying the number
of permutations that avoid the pattern 1, 2, . . . k + 1.

Schensted’s original question was to count the number of
permutations on n whose long. incr. subseq. was a fixed value k:

#{w ∈ Sn : lis(w) = k}
To do this, he discovered a very beautiful bijection between
permutations and pairs of “Standard Young Tableaux”, which were
previously cleverly counted.
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Partitions & Tableaux

A partition λ of n is a sequence of positive integers

λ = (λ1, λ2, . . . λl)

such that:

1 The terms are weakly decreasing, i.e., λ1 ≥ λ2 ≥ λ3 ≥ . . .
2 λ1 + λ2 + · · ·+ λl = n

Suppressing commas and trailing zeroes, we have seven partitions
of 5:

5, 41, 32, 311, 221, 2111, 11111

represented visually as left-justified shapes (whose squares are
called cells):

, , , , · · ·



Standard Young Tableaux

A standard Young tableau of shape λ, is a labeling of the cells
of a partition with the numbers 1, 2, . . . , |λ| which increases along
each row and column. For example,

1 3 4 8

2 6 9

5 7 ,

1 2 3 5 7 9

4 8 10 13

6 11 12 but not

1 2 3 5 7 11

4 8 12 13

6 9 10

Such a labeling is in easy bijection with sequences (“chains”) of
shapes that grow one box in each step. For example, the first
tableaux above corresponds to:

, , , , , , , , .



Hook-Length Formula

Let SYT(λ) = set of standard Young tableaux of a shape λ with n
boxes. There’s a surprisingly simple formula for counting these.
Frame-Robinson-Thrall Hook Length Formula:

fλ = # SYT(λ) =
n!∏

c∈λ hc

where for each cell of λ, hc represents the size of the hook
centered at c (all cells to the right of or below c , including c).

EG: If λ = (3, 2) = , then we fill in the hook lengths:

4 3 1

2 1 =⇒ # SYT(3, 2) =
5!

4 · 3 · 2 · 1 · 1
= 5

corresponding to

1 2 3
4 5 ,

1 2 4
3 5 ,

1 2 5
3 4 ,

1 3 4
2 5 ,

1 3 5
2 4 .



Where are we?

We are about at the point in the talk where it’s easy to get lost.
We have:

Permutations and increasing sequences therein: 527361948;
We’d like to count:

#{w ∈ Sn : lis(w) = k}

We have partitions/shapes and fillings of these
1 2 5
3 4

called tableaux.

We have a hook-length formula to count tableaux of a given
shape:

fλ = # SYT(λ) =
n!∏

c∈λ hc !

How can we get from permutations to tableaux?
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Schensted’s Algorithm

Schensted’s algorithm is based on inserting a number a into a
partial SYT T as follows:

Place a where it should go in increasing order in row 1 of T ,
possibly bumping an preexisting element b in that spot;

Repeat with b in the next row, and continue iterating;

Finish when some element comes to rest at the end of a row.

EG: Suppose we insert 4 into the tableau

1 3 5
2 7
6 9
8 We get

(showing the intermediate steps)

1 3 45
2 7
6 9
8

1 3 4
2 57
6 9
8

1 3 4
2 5
6 79
8

1 3 4
2 5
6 7
8 9

The last tableau on the right is the result of this insertion.



RSK Correspondence

Starting from an empty shape, insert each element of w ∈ Sn
in turn to get a SYT P of some shape.

In order to make this reversible, we need to keep track of the
order in which new cells are created. We record these in a
second tableau Q, which has the same shape.

Then the map w ←→ (P,Q) is a bijection
Sn ←→

∏
|λ|=n SYT(λ)× SYT(λ)

If we apply the above to the permutation 1 2 3 4 5 6
3 1 6 2 5 4 We get the

following sequence of tableaux:

P : ∅ 3
1
3

1 6
3

1 2
3 6

1 2 5
3 6

1 2 4
3 5
6

Q : ∅ 1
1
2

1 3
2

1 3
2 4

1 3 5
2 4

1 3 5
2 4
6



Why is it beautiful?

See basic Schensted bumping algorithm applet at:
http://www.math.uconn.edu/~troby/Goggin/index.html

Here are some beautiful properties and consequences of RSK:

(Schensted) lis(w) = length of the first row of P. Similarly,
lds(w) = length of the first col of P.

(Schützenberger) If w
R−S←→ (P,Q) then

w−1
R−S←→ (Q,P).∑

|λ|=n

f 2λ = n!, where fλ = # SYT(λ) = dimension of

irreducible Sn rep. corr. to λ.

EG: When n = 5 one computes (via FRT or by hand) that
f5 = 1, f41 = 4, f32 = 5, f311 = 6, f221 = 5, f2111 = 4, f11111 = 1 so

12+42+52+62+52+42+12 = 1+16+25+36+25+16+1 = 120 = 5!

http://www.math.uconn.edu/~troby/Goggin/index.html


Counting permutations with fixed LIS

This bijection allowed Schensted to answer his original question of
counting:

#{w ∈ Sn : lis(w) = k} = #{(P,Q) : first row length = k}

by just counting the number of pairs of same shape tableau whose
first row is a given length (using FRT hook-length formula).
EG: If n = 6 and lis(w) = k = 3, then w corresponds to a pair of

tableaux of shape or , so the total number of such
permutations is

f 232 + f 2311 = 25 + 36 = 61 ,

the year in which Schensted published his paper.



Erdős-Szekeres

The following well-known result of Erdős-Szekeres & Seidenberg is
an immediate corollary of RSK:

Cor: Let w ∈ Spq+1. Then either lis(w) > p or lds(w) > q.

Proof: Let w ←→ (P,Q) of shape λ. If lis(w) ≤ p and
lds(w) ≤ q, then the shape must fit inside a p× q rectangle, which
forces λ to have fewer than pq + 1 boxes, contradiction.
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Summary & References

Bijections Rule! And they can lead to clever counting.

1 R.P. Stanley: Enumerative Combinatorics, Vol. 2, Sec. 7.11,
and references therein.

2 Papers by C. Schensted, M-P. Schützenberger, S. Fomin.

3 Google “Schensted”, “RSK”, or “Tom Roby” for applets.
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