My broad interests are in enumerative and algebraic combinatorics, particularly bijective correspondences, partially-ordered sets, connections with representation theory, and discrete dynamics. My most recent focus has been on dynamical algebraic combinatorics, focussing on issues of periodicity, orbit structure, homomesy, and equivariant bijections.

A poset P is a set with an order relation \leq which is reflexive, antisymmetric, and transitive. An order ideal $I \subseteq P$ satisfies $v \in P$ and $u \leq v \implies u \in P$. The set of all order ideals is denoted $J(P)$.

Define an operator ρ on $J(P)$ by $\rho(I) =$ the order ideal I' gen. by the minimal elements of $P - I$.

Here are the orbits of ρ on the rectangular poset $[2] \times [2]$:

\[\begin{array}{ccc}
O_1 & \rho \to & O_2 \\
\bullet & \rho & \bullet \\
\circ & \rho & \circ \\
\circ & \rho & \circ
\end{array} \]

Given an action τ on a set S, we call a statistic $g : S \to \mathbb{C}$ homomesic (or c-mesic) if the average of g over every τ-orbit O is the same constant c, i.e., $\frac{1}{\#O} \sum_{v \in O} g(v) = c$ for every O.

The cardinality statistic is 2-mesic for ρ acting on $J(P)$.

One can also describe ρ as a product of toggling involutions, one for each poset element, from top to bottom (“rowmotion in slowmotion”). More formally, for $I \in J(P)$ and $v \in P$, let $t_v(I) = I \Delta \{v\}$ (symmetric difference) provided that $I \Delta \{v\}$ is an order ideal of P; otherwise, let $t_v(I) = I$. The involutions t_x and t_y commute unless x covers y or y covers x, and $\rho = t_{v_1} \circ t_{v_2} \circ \cdots \circ t_{v_n} : J(P) \to J(P)$ where (v_1, \ldots, v_n) is any linear extension of P.

This setup generalizes nicely from order ideals (order-preserving 0-1 labelings) to order-preserving labelings $f : P \to [0, 1]$ (the order polytope of Stanley). (No time today, but of independent interest.)

Detropicalizing these PL-toggles leads to an operator in the birational category: For any $v \in P$, define the birational v-toggle as the rational map $T_v : \mathbb{C}^\hat{P} \to \mathbb{C}^\hat{P}$ defined by

\[
(T_v f)(w) = \begin{cases}
 f(w), & \text{if } w \neq v; \\
 \frac{1}{f(v)} \sum_{u \in \hat{P}, u \geq v} f(u), & \text{if } w = v
\end{cases}
\]

for all $w \in \hat{P}$.

- Tropicalization $\cdot \mapsto +$ and $+ \mapsto \max$, recovers PL toggles.
- We can describe toggling at v as: (a) inverting the label at v, (b) multiplying it with the sum of the labels at vertices covered by v, (c) multiplying it with the harmonic sum of the labels at vertices covering v.
- Note that T_v changes only the label at v.
- These maps are involutions: $T_v^2 = \text{id}$.

Here is one iteration, birationally toggling from top-to-bottom:

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 & \frac{x+y}{x} & \frac{x+y}{y} & \frac{x+y}{y} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\frac{x+y}{x} & \frac{w(x+y)}{x} & \frac{w(x+y)}{y} & \frac{w(x+y)}{y} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\frac{w(x+y)}{x} & \frac{w(x+y)}{y} & \frac{w(x+y)}{y} & \frac{w(x+y)}{y} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\frac{w(x+y)}{x} & \frac{w(x+y)}{y} & \frac{w(x+y)}{y} & \frac{w(x+y)}{y} \\
\end{array}
\]

And here is a complete orbit:

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 & \frac{x+y}{x} & \frac{w(x+y)}{y} & \frac{1}{y} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\frac{w(x+y)}{x} & \frac{w(x+y)}{y} & \frac{1}{y} & \frac{1}{y} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\frac{w(x+y)}{x} & \frac{w(x+y)}{y} & \frac{1}{y} & \frac{1}{y} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\frac{w(x+y)}{x} & \frac{w(x+y)}{y} & \frac{1}{y} & \frac{1}{y} \\
\end{array}
\]

Surprises:

(a) This is still periodic on \([r] \times [s]\) with period \(r + s\) [GrRo15, MR18]. This appears to generalize only to very special classes of posets [GrRo16, GrRo15].

(b) Homomesy generalizes to various products across an orbit being equal to 1 [GrRo15, MR18].

(c) There is a formula for iterating \(\rho_B\) on a product of two chains in terms of families of NILPs [MR18].

(d) One can define a **noncommutative** version of this that still has periodicity [JR20].

For a 25-minute intro to my work, see the video https://www.youtube.com/watch?v=9TUajKFInwg of my talk at AlCove (http://www.math.uwaterloo.ca/~opecheni/alcove.htm).

J Propp, J Striker, N Williams, and I are running a workshop at BIRS, with virtual talks MWF of the last two weeks of October: http://www.birs.ca/events/2020/5-day-workshops/20w5164.

References

