Tom Roby Dynamical Algebraic Combinatorics in 10 Minutes 9 September 2020

My broad interests are in enumerative and algebraic combinatorics, particularly bijective correspon-
dences, partially-ordered sets, connections with representation theory, and discrete dynamics. My
most recent focus has been on dynamical algebraic combinatorics, focussing on issues of periodicity,
orbit structure, homomesy, and equivariant bijections.

A poset P is a set with an order relation < which is reflexive, antisymmetric, and transitive. An
order ideal I C P satisfies v € P and u <v = wu € P. The set of all order ideals is denoted J(P).

Define an operator p on J(P) by p(I) = the order ideal I’ gen. by the minimal elements of P — I.
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Here are the orbits of p on the rectangular poset [2] x [2]:
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Given an action 7 on a set S, we call a statistic g : S — C homomesic (or c-mesic) if the average
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of g over every 7T-orbit O is the same constant c, i.e., %0 Z g(v) = ¢ for every O.
veO

The cardinality statistic is 2-mesic for p acting on J(P).
One can also describe p as a product of toggling involutions, one for each poset element, from top to
bottom (“rowmotion in slowmotion”). More formally, for I € J(P) and v € P, let t,(I) = IA{v}
(symmetric difference) provided that IA{v} is an order ideal of P; otherwise, let t,(I) = I. The invo-
lutions t, and t, commute unless x covers y or y covers z, and p = t,, ot,, o---ot, :J(P)—= J(P)
where (v1,...,v,) is any linear extension of P.

This setup generalizes nicely from order ideals (order-preserving 0-1 labelings) to order-preserving
labelings f : P — [0, 1] (the order polytope of Stanley). (No time today, but of independent interest.)

Detropicalizing these PL-toggles leads to an operator in the birational category: For any v € P,
define the birational v-toggle as the rational map T}, : CF --» C¥ defined by

e Tropicalization - — + and + +— max, recovers PL

f(w), if w # v; toggles.
> f(u) e We can describe toggling at v as: (a) inverting
1 u€ePp; the label at v, (b) multiplying it with the sum of
(T f) (w) = LU=y T ifw=wv the labels at vertices covered by v, (¢) multiplying
f () > it with the harmonic sum of the labels at vertices
uep; (u) covering v.
. u>v e Note that T, changes only the label at v.

for all w € P e These maps are involutions: 7?2 = id.



Here is one iteration, birationally toggling from top-to-bottom:
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And here is a complete orbit:
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Surprises: (a) This is still periodic on [r] x [s] with period r 4+ s [GrRo15, MR18]. This appears
to generalize only to very special classes of posets [GrRol16, GrRol5].

(b) Homomesy generalizes to various products across an orbit being equal to 1 [GrRol5, MR18].
(c) There is a formula for iterating pp on a product of two chains in terms of families of NILPs [MR18].
(d) One can define a noncommutative version of this that still has periodicity [JR20].

For a 25-minute intro to my work, see the video https://www.youtube.com/watch?v=9TUajKFInwg
of my talk at AlCove (http://www.math.uwaterloo.ca/~opecheni/alcove.htm).

J Propp, J Striker, N Williams, and I are running a workshop at BIRS, with virtual talks MWEF' of
the last two weeks of October: http://www.birs.ca/events/2020/5-day-workshops/20w5164.
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