Dynamical Algebraic Combinatorics: Actions, Orbits, and Averages

Tom Roby (UConn)

Describing joint research with
Michael Joseph, James Propp, & Gregg Musiker

Colloquium
North Dakota State University
Fargo, ND USA

27 March 2018 (Tuesday), 15:00

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html
Dynamical Algebraic Combinatorics: Actions, Orbits, and Averages

Tom Roby (UConn)

Describing joint research with
Michael Joseph, James Propp, & Gregg Musiker

Colloquium
North Dakota State University
Fargo, ND USA

27 March 2018 (Tuesday), 15:00

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html
Abstract: Dynamical Algebraic Combinatorics explores actions on sets of discrete combinatorial objects, many of which can be built up by small local changes, e.g., Schutzenberger’s promotion and evacuation, or the rowmotion map on order ideals. There are strong connections to the combinatorics of representation theory and with Coxeter groups. Birational liftings of these actions are related to the Y-systems of statistical mechanics, thereby to cluster algebras, in ways that are still relatively unexplored. The term "homomesy" (coined by Jim Propp and the speaker) describes the following widespread phenomenon: Given a group action on a set of combinatorial objects, a statistic on these objects is called "homomesic" if its average value is the same over all orbits. Along with its intrinsic interest as a kind of "hidden invariant", homomesy can be used to prove certain properties of the action, e.g., facts about the orbit sizes. Proofs of homomesy often involve developing tools that further our understanding of the underlying dynamics, e.g., by finding an equivariant bijection.

This talk will be an introduction to these ideas, focusing on the combinatorial side and giving a number of examples of such actions.
This seminar talk discusses work with Mike Joseph, with Jim Propp and with Gregg Musiker including ideas and results from Arkady Berenstein, David Einstein, Darij Grinberg, Shahrzad Haddadan, Jessica Striker, and Nathan Williams.

Mike LaCroix wrote fantastic postscript code to generate animations and pictures that illustrate our maps operating on order ideals on products of chains. Jim Propp created many of the other pictures and slides that are used here.

Thanks also to Drew Armstrong, Anders Björner, Barry Cipra, Darij Grinberg, Karen Edwards, Robert Edwards, Svante Linusson, Vic Reiner, Richard Stanley, Ralf Schiffler, Hugh Thomas, and Ben Young.

Please feel free to interrupt with questions or comments.
UPDATE THIS!!!!

- Cyclic rotation of binary strings and definition of homomesy;
- Bulgarian Solitaire;
- Rowmotion map on antichains and order ideals of posets;
- Toggling independent sets of path graph;
Cyclic rotation of binary strings
Cyclic rotation of binary strings

- Let \([n]_k \) be the set of length \(n \) binary strings with \(k \) 1s.
- Let \(C_R : [n]_k \rightarrow [n]_k \) be rightward cyclic rotation.

Example

\(n = 6, \ k = 2 \)

\[
101000 \quad \overset{C_R}{\longrightarrow} \quad 010100
\]
An **inversion** of a binary string is a pair of positions \((i, j)\) with \(i < j\) such that there is a 1 in position \(i\) and a 0 in position \(j\).

Example

\(n = 6, \ k = 2\)

<table>
<thead>
<tr>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>7</td>
<td>110000</td>
<td>8</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>010100</td>
<td>5</td>
<td>011000</td>
<td>6</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>001010</td>
<td>3</td>
<td>001100</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>000101</td>
<td>1</td>
<td>000110</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100010</td>
<td>5</td>
<td>000011</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010001</td>
<td>3</td>
<td>100001</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cyclic rotation of binary strings

An **inversion** of a binary string is a pair of positions \((i, j)\) with \(i < j\) such that there is a 1 in position \(i\) and a 0 in position \(j\).

Example

\(n = 6, \ k = 2\)

<table>
<thead>
<tr>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>7</td>
<td>110000</td>
<td>8</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>010100</td>
<td>5</td>
<td>011000</td>
<td>6</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>001010</td>
<td>3</td>
<td>001100</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>000101</td>
<td>1</td>
<td>000110</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100010</td>
<td>5</td>
<td>000011</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010001</td>
<td>3</td>
<td>100001</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average: 4</td>
<td></td>
<td>Average: 4</td>
<td></td>
<td>Average: 4</td>
<td></td>
</tr>
</tbody>
</table>
Definition of Homomesy

Given

- a set S,
- an invertible map $\tau : S \rightarrow S$ such that every τ-orbit is finite,
- a function ("statistic") $f : S \rightarrow \mathbb{K}$ where \mathbb{K} is a field of characteristic 0.

We say that the triple (S, τ, f) exhibits **homomesy** if there exists a constant $c \in \mathbb{K}$ such that for every τ-orbit $\emptyset \subseteq S$,

$$\frac{1}{\#\emptyset} \sum_{x \in \emptyset} f(x) = c.$$
Definition of Homomesy

Given

- a set S,
- an invertible map $\tau : S \to S$ such that every τ-orbit is finite,
- a function ("statistic") $f : S \to K$ where K is a field of characteristic 0.

We say that the triple (S, τ, f) exhibits **homomesy** if there exists a constant $c \in K$ such that for every τ-orbit $\mathcal{O} \subseteq S$,

$$\frac{1}{\#\mathcal{O}} \sum_{x \in \mathcal{O}} f(x) = c.$$

In this case, we say that the function f is **homomesic** with average c (also called **c-mesic**) under the action of τ on S.
Theorem (Propp & R.[PrRo15, §2.3])

Let \(\mathcal{I}(s) \) denote the number of inversions of \(s \in \binom{[n]}{k} \).

Then the function \(\mathcal{I} : \binom{[n]}{k} \to \mathbb{Q} \) is homomesic with average \(\frac{k(n-k)}{2} \) with respect to cyclic rotation on \(S_{n,k} \).
Theorem (Propp & R.[PrRo15, §2.3])

Let $I(s)$ denote the number of inversions of $s \in \binom{[n]}{k}$.

Then the function $I : \binom{[n]}{k} \to \mathbb{Q}$ is homomesic with average $\frac{k(n-k)}{2}$ with respect to cyclic rotation on $S_{n,k}$.

Proof.

Consider superorbits of length n. Show that replacing "01" with "10" in a string s leaves the total number of inversions in the superorbit generated by s unchanged (and thus the average since our superorbits all have the same length).
Cyclic rotation of binary strings

Example

\(n = 6, k = 2 \)

<table>
<thead>
<tr>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>7</td>
<td>110000</td>
<td>8</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>010100</td>
<td>5</td>
<td>011000</td>
<td>6</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>001010</td>
<td>3</td>
<td>001100</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>000101</td>
<td>1</td>
<td>000110</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100010</td>
<td>5</td>
<td>000011</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010001</td>
<td>3</td>
<td>100001</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
</tr>
</tbody>
</table>
Cyclic rotation of binary strings

Example

$n = 6, \ k = 2$

<table>
<thead>
<tr>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>7</td>
<td>110000</td>
<td>8</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>010100</td>
<td>5</td>
<td>011000</td>
<td>6</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>001010</td>
<td>3</td>
<td>001100</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>000101</td>
<td>1</td>
<td>000110</td>
<td>2</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>100010</td>
<td>5</td>
<td>000011</td>
<td>0</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>010001</td>
<td>3</td>
<td>100001</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
</tr>
</tbody>
</table>
There are other homomesic statistics as well, e.g., Let $\mathbb{1}_j(s) := s_j$, the jth bit of the string s. Can you see why this is homomesic?
Since its initial codification about 5 years ago, a large number of examples of the homomesy phenomenon have been identified across dynamical algebraic combinatorics. These include:

- Promotion of SSYT; Rowmotion of “nice” (e.g., minuscule heap) posets [PrRo15, StWi11, Had14, RuWa15+];

There are many others, including the next few examples.
Since its initial codification about 5 years ago, a large number of examples of the homomesy phenomenon have been identified across dynamical algebraic combinatorics. These include:

- Promotion of SSYT; Rowmotion of “nice” (e.g., minuscule heap) posets [PrRo15, StWi11, Had14, RuWa15+];
- In general, composing certain involutions called “toggles” on the set leads to operations with interesting homomesy [Str15+];
Homomesy

Since its initial codification about 5 years ago, a large number of examples of the homomesy phenomenon have been identified across dynamical algebraic combinatorics. These include:

- Promotion of SSYT; Rowmotion of “nice” (e.g., minuscule heap) posets [PrRo15, StWi11, Had14, RuWa15+];
- In general, composing certain involutions called “toggles” on the set leads to operations with interesting homomesy [Str15+];
- Toggling the “arcs” in noncrossing partitions [EFGJMPR16];
Homomesy

Since its initial codification about 5 years ago, a large number of examples of the homomesy phenomenon have been identified across dynamical algebraic combinatorics. These include:

- Promotion of SSYT; Rowmotion of “nice” (e.g., minuscule heap) posets [PrRo15, StWi11, Had14, RuWa15+];
- In general, composing certain involutions called “toggles” on the set leads to operations with interesting homomesy [Str15+];
- Toggling the “arcs” in noncrossing partitions [EFGJMPR16];
- Whirling functions between finite sets: injections, surjections, parking functions, etc. [JPR17+].
Homomesy

Since its initial codification about 5 years ago, a large number of examples of the homomesy phenomenon have been identified across dynamical algebraic combinatorics. These include:

- Promotion of SSYT; Rowmotion of “nice” (e.g., minuscule heap) posets [PrRo15, StWi11, Had14, RuWa15+];
- In general, composing certain involutions called “toggles” on the set leads to operations with interesting homomesy [Str15+];
- Toggling the “arcs” in noncrossing partitions [EFGJMPR16];
- Whirling functions between finite sets: injections, surjections, parking functions, etc. [JPR17+]; and
- Liftings of homomesy from combinatorial actions to piecewise linear and birational maps [EiPr13, GrRo16, GrRo15b].
Since its initial codification about 5 years ago, a large number of examples of the homomesy phenomenon have been identified across dynamical algebraic combinatorics. These include:

- Promotion of SSYT; Rowmotion of “nice” (e.g., minuscule heap) posets [PrRo15, StWi11, Had14, RuWa15+];
- In general, composing certain involutions called “toggles” on the set leads to operations with interesting homomesy [Str15+];
- Toggling the “arcs” in noncrossing partitions [EFGJMPR16];
- Whirling functions between finite sets: injections, surjections, parking functions, etc. [JPR17+]; and
- Liftings of homomesy from combinatorial actions to piecewise linear and birational maps [EiPr13, GrRo16, GrRo15b].
- There are many others, including the next few examples.
Bulgarian Solitaire
Homomesy: A more general definition

There are some cases where we find a similar phenomenon, but where the map no longer has finite orbits. Here is a more general definition of homomesy that is useful for some purposes.

Definition

Let τ be an self-map on a discrete set of objects S, and f be a statistic on S. We say f is **homomesic** if the value of

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} f(\tau^i(x)) = c$$

is independent of the starting point $x \in S$. (Also, f is c-mesic.)

This clearly reduces to the earlier definition in the case where we have an invertible action with finite orbits.
Example 2: Bulgarian solitaire

Given a way of dividing n identical chips into one or more heaps (represented as a partition λ of n), define $b(\lambda)$ as the partition of n that results from removing a chip from each heap and putting all the removed chips into a new heap.

- First surfaced as a puzzle in Russia around 1980, and a solution by Andrei Toom in *Kvant*; later popularized in 1983 Martin Gardner column; see survey of Brian Hopkins [Hop12].
- Initial puzzle: starting from any of 176 partitions of 15, one ends at $(5, 4, 3, 2, 1)$.

\[
\begin{align*}
1^{15} & \rightarrow 15 & \rightarrow 14, 1 & \rightarrow 13, 2 & \rightarrow 12, 2, 1 & \rightarrow 11, 3, 1 \\
5, 4, 3, 2, 1 & \rightarrow 6, 4, 3, 2 & \rightarrow 7, 4, 3, 1 & \rightarrow 8, 4, 2, 1 & \rightarrow 9, 3, 2, 1 & \rightarrow 10, 3, 2
\end{align*}
\]
E.g., for \(n = 8 \), two trajectories are
\[
53 \rightarrow 422 \rightarrow 3311 \rightarrow 422 \rightarrow \ldots
\]
and
\[
62 \rightarrow 521 \rightarrow 431 \rightarrow 332 \rightarrow 3221 \rightarrow 4211 \rightarrow 431 \rightarrow \ldots
\]
(the new heaps are underlined).
Bulgarian solitaire: homomesies

Let \(\varphi(\lambda) \) be the number of parts of \(\lambda \). In the forward orbit of \(\lambda = (5, 3) \), the average value of \(\varphi \) is \((4 + 3)/2 = 7/2 \); while for \(\lambda = (6, 2) \), the average value of \(\varphi \) is \((3 + 4 + 4 + 3)/4 = 14/4 = 7/2 \).

Proposition (“Bulgarian Solitaire has homomesic number of parts”)

If \(n = k(k - 1)/2 + j \) with \(0 \leq j < k \), then for every partition \(\lambda \) of \(n \), the ergodic average of \(\varphi \) on the forward orbit of \(\lambda \) is \(k - 1 + j/k \).

\((n = 8 \) corresponds to \(k = 4, j = 2 \).) So the number-of-parts statistic on partitions of \(n \) is homomesic wrt/\(\delta \); similarly for “size of (kth) largest part”.
Since S is finite, every forward orbit is eventually periodic, and the ergodic average of φ for the forward orbit that starts at x is just the average of φ over the periodic orbit that x eventually goes into.
Ignoring transience

Since S is finite, every forward orbit is eventually periodic, and the ergodic average of φ for the forward orbit that starts at x is just the average of φ over the periodic orbit that x eventually goes into.

This definition also works in situations where S is infinite. But for rest of this talk, we’ll restrict attention to maps τ that are invertible on S, where S is finite, so our initial definition (below) makes sense.

Definition ([PrRo15])

Given an (invertible) action τ on a finite set of objects S, call a statistic $f : S \to \mathbb{C}$ **homomesic** with respect to (S, τ) if the average of f over each τ-orbit O is the same constant c for all O, i.e.,

$$\frac{1}{\# O} \sum_{s \in O} f(s) = c$$

does not depend on the choice of O.

(Call f **c-mesic** for short.)
Rowmotion: an invertible operation on antichains

Let $\mathcal{A}(P)$ be the set of antichains of a finite poset P.

Given $A \in \mathcal{A}(P)$, let $\rho_A(A)$ be the set of minimal elements of the complement of the downward-saturation of A.

ρ_A is invertible since it is a composition of three invertible operations:

antichains \leftrightarrow downsets \leftrightarrow upsets \leftrightarrow antichains

This map and its inverse have been considered with varying degrees of generality, by many people more or less independently (using a variety of nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and Williams, who named it rowmotion.
Viewing the elements of the poset as squares below, we would map:

Area = 8

Area = 10
Let Δ be a (reduced irreducible) root system in \mathbb{R}^n. (Pictures soon!)

Choose a system of positive roots and make it a poset of rank n by decreeing that y covers x iff $y - x$ is a simple root.

Theorem (Armstrong-Stump-Thomas [AST11], Conj. [Pan09])

Let \mathcal{O} be an arbitrary ρ_A-orbit. Then

$$\frac{1}{\#\mathcal{O}} \sum_{A \in \mathcal{O}} \#A = \frac{n}{2}.$$

In our language, the cardinality statistic is homomesic with respect to the action of rowmotion on antichains in root posets.
Here are the classes of posets included in Panyushev’s conjecture.

(Graphic courtesy of Striker-Williams.)
Here we have just an orbit of size 2 and an orbit of size 3:

\[
\begin{array}{c}
\begin{array}{c}
\circ \\
1
\end{array}
\end{array}
\hspace{1cm}
\begin{array}{c}
\begin{array}{c}
\bullet
\end{array}
\end{array}
\hspace{1cm}
\begin{array}{c}
\begin{array}{c}
\circ
\end{array}
\end{array}
\hspace{1cm}
\begin{array}{c}
\begin{array}{c}
\bullet
\end{array}
\end{array}
\hspace{1cm}
\begin{array}{c}
\begin{array}{c}
\circ
\end{array}
\end{array}
\hspace{1cm}
\begin{array}{c}
\begin{array}{c}
\bullet
\end{array}
\end{array}
\end{array}
\]

Within each orbit, the average antichain has cardinality \(n/2 = 1 \).
Example of Rowmotion on A_3 root poset

For the type A_3 root poset, there are 3 ρ_A-orbits, of sizes 8, 4, 2:

Checking the average cardinality for each orbit we find that

$$\frac{1 + 2 + 2 + 1 + 1 + 2 + 2 + 1}{8} = \frac{0 + 3 + 2 + 1}{4} = \frac{2 + 1}{2} = \frac{3}{2}.$$
A simpler-to-prove phenomenon of this kind concerns the poset $[a] \times [b]$ (the type A *minuscule* poset), where $[k] = \{1, 2, \ldots, k\}$:

Theorem (Propp, R.)

Let \mathcal{O} be an arbitrary ρ_A-orbit in $A([a] \times [b])$. Then

$$
\frac{1}{\# \mathcal{O}} \sum_{A \in \mathcal{O}} \# A = \frac{ab}{a + b}.
$$
Antichains in \([a] \times [b]\): cardinality is homomesic

Theorem (Propp, R.)

Let \(\mathcal{O}\) be an arbitrary \(\rho_A\)-orbit in \(A([a] \times [b])\). Then

\[
\frac{1}{\#\mathcal{O}} \sum_{A \in \mathcal{O}} \#A = \frac{ab}{a + b}.
\]

This proof uses an non-obvious equivariant bijection (the “Stanley-Thomas” word [Sta09, §2]) between order ideals in \([a] \times [b]\) and binary strings, which carries the \(\rho_J\) action to cyclic rotation of bitstrings.
Antichains in $[a] \times [b]$: cardinality is homomesic

Theorem (Propp, R.)

Let \mathcal{O} be an arbitrary ρ_A-orbit in $A([a] \times [b])$. Then

$$
\frac{1}{\#\mathcal{O}} \sum_{A \in \mathcal{O}} \#A = \frac{ab}{a + b}.
$$

Shows the Stanley-Thomas word for a 3-element antichain in $A([7] \times [5])$.

Red and black correspond to $+1$ and -1 respectively.
Here we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average antichain has cardinality $ab/(a + b) = 1$.
Antichains in $[a] \times [b]$: fiber-cardinality is homomesic

Within each orbit, the average antichain has $1/2$ a green element and $1/2$ a blue element.
Antichains in $[a] \times [b]$: fiber-cardinality is homomesic

For $(i, j) \in [a] \times [b]$, and A an antichain in $[a] \times [b]$, let $1_{i,j}(A)$ be 1 or 0 according to whether or not A contains (i, j).

Also, let $f_i(A) = \sum_{j \in [b]} 1_{i,j}(A) \in \{0, 1\}$ (the cardinality of the intersection of A with the fiber $\{(i, 1), (i, 2), \ldots, (i, b)\}$ in $[a] \times [b]$), so that $\#A = \sum_i f_i(A)$.

Likewise let $g_j(A) = \sum_{i \in [a]} 1_{i,j}(A)$, so that $\#A = \sum_j g_j(A)$.

Theorem (Propp, R.)

For all i, j,

$$\frac{1}{\#\mathcal{O}} \sum_{A \in \mathcal{O}} f_i(A) = \frac{b}{a + b} \quad \text{and} \quad \frac{1}{\#\mathcal{O}} \sum_{A \in \mathcal{O}} g_j(A) = \frac{a}{a + b}.$$

The indicator functions f_i and g_j are homomesic under ρ_A, even though the indicator functions $1_{i,j}$ aren’t.
Antichains in $[a] \times [b]$: centrally symmetric homomesies

Theorem (Propp, R.)

In any orbit, the number of A that contain (i, j) equals the number of A that contain the opposite element $(i', j') = (a + 1 - i, b + 1 - j)$.

That is, the function $1_{i,j} - 1_{i',j'}$ is homomesic under ρ_A, with average value 0 in each orbit.
We’ve already seen examples of Rowmotion on antichains ρ_A:

$$
\begin{array}{c}
\rho_A : \bullet \quad \rightarrow \quad \bullet \quad \rightarrow \quad \bullet \quad \rightarrow \\
\circ \quad \circ \quad \circ \quad \circ \quad \circ \end{array}
$$

We can also define it as an operator ρ_J on $J(P)$, the set of order ideals of a poset P, by shifting the waltz beat by 1:

$$
\begin{array}{c}
\rho_J : \bullet \quad \rightarrow \quad \bullet \quad \rightarrow \quad \bullet \quad \rightarrow \\
\circ \quad \circ \quad \circ \quad \circ \quad \circ \end{array}
$$

\[
\frac{(0+1+3+5+7+8)}{6} = 4
\]

\[
\frac{(2 + 4 + 6 + 6 + 4 + 2)}{6} = 4
\]

\[(3 + 5 + 4 + 3 + 5 + 4) / 6 = 4\]
Ideals in $[a] \times [b]$: the case $a = b = 2$

Again we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average order ideal has cardinality $ab/2 = 2$.
Within each orbit, the average order ideal has

1/2 a violet element, 1 red element, and 1/2 a brown element.
For $1 - b \leq k \leq a - 1$, define the kth file of $[a] \times [b]$ as

$$\{(i,j) : 1 \leq i \leq a, \ 1 \leq j \leq b, \ i - j = k\}.$$

For $1 - b \leq k \leq a - 1$, let $h_k(I)$ be the number of elements of I in the kth file of $[a] \times [b]$, so that $\#I = \sum_k h_k(I)$.

Theorem (Propp, R.)

For every ρ_J-orbit \mathcal{O} in $J([a] \times [b])$:

- $\frac{1}{\#\mathcal{O}} \sum_{I \in \mathcal{O}} h_k(I) = \begin{cases} \frac{(a-k)b}{a+b} & \text{if } k \geq 0 \\ \frac{a(b+k)}{a+b} & \text{if } k \leq 0. \end{cases}$
- $\frac{1}{\#\mathcal{O}} \sum_{I \in \mathcal{O}} \#I = \frac{ab}{2}$.
There is an alternative definition of rowmotion, which splits it into many small operations, each an involution.

- Define $t_v(S)$ as:
 - $S \triangle \{v\}$ (symmetric difference) if this is an order ideal;
 - S otherwise.
There is an alternative definition of rowmotion, which splits it into many small operations, each an involution.

- Define $t_v (S)$ as:
 - $S \triangle \{v\}$ (symmetric difference) if this is an order ideal;
 - S otherwise.

("Try to add or remove v from S, as long as the result remains an order ideal, i.e. within $J(P)$; otherwise, leave S fixed.")
There is an alternative definition of rowmotion, which splits it into many small operations, each an involution.

- Define $t_v(S)$ as:
 - $S \triangle \{v\}$ (symmetric difference) if this is an order ideal;
 - S otherwise.

(“Try to add or remove v from S, as long as the result remains an order ideal, i.e. within $J(P)$; otherwise, leave S fixed.”)

- More formally, if P is a poset and $v \in P$, then the v-toggle is the map $t_v : J(P) \to J(P)$ which takes every order ideal S to:
 - $S \cup \{v\}$, if v is not in S but all elements of P covered by v are in S already;
 - $S \setminus \{v\}$, if v is in S but none of the elements of P covering v is in S;
 - S otherwise.

- Note that $t_v^2 = \text{id}$.
Classical rowmotion: the toggling definition

- Let \((v_1, v_2, ..., v_n)\) be a **linear extension** of \(P\); this means a list of all elements of \(P\) (each only once) such that \(i < j\) whenever \(v_i < v_j\).
- Cameron and Fon-der-Flaass showed that
 \[
 r = t_{v_1} \circ t_{v_2} \circ ... \circ t_{v_n}.
 \]
 Hugh Thomas and Nathan Williams call this **Rowmotion in slow motion** [ThWi17].

Example: Re-coordinatizing \(P = [a] \times [b] = [0, r] \times [0, s]\), sorry!

Start with this order ideal \(S\):

```
(1, 1)       

(1, 0)       |       (0, 1)
     /   \
    /     \
(0, 0)
```
Let \((v_1, v_2, \ldots, v_n)\) be a **linear extension** of \(P\); this means a list of all elements of \(P\) (each only once) such that \(i < j\) whenever \(v_i < v_j\).

Cameron and Fon-der-Flaass showed that

\[
\mathbf{r} = t_{v_1} \circ t_{v_2} \circ \ldots \circ t_{v_n}.
\]

Hugh Thomas and Nathan Williams call this *Rowmotion in slow motion* [ThWi17].

Example: Re-coordinatizing \(P = [a] \times [b] = [0, r] \times [0, s]\), sorry!

First apply \(t_{(1,1)}\), which changes nothing:

\[
\begin{array}{c}
(1,1) \\
(1,0) \\
(0,0) \\
(0,1)
\end{array}
\]
Classical rowmotion: the toggling definition

- Let \((v_1, v_2, ..., v_n)\) be a **linear extension** of \(P\); this means a list of all elements of \(P\) (each only once) such that \(i < j\) whenever \(v_i < v_j\).
- Cameron and Fon-der-Flaass showed that

\[
\mathbf{r} = \mathbf{t}_{v_1} \circ \mathbf{t}_{v_2} \circ ... \circ \mathbf{t}_{v_n}.
\]

Hugh Thomas and Nathan Williams call this *Rowmotion in slow motion* [ThWi17].

Example: Re-coordinatizing \(P = [a] \times [b] = [0, r] \times [0, s]\), sorry!

Then apply \(t_{(1,0)}\), which removes \((1,0)\) from the order ideal:

\[
\begin{array}{c}
(1,1) \\
\downarrow \\
(1,0) \\
\downarrow \\
(0,0) \\
\end{array}
\]

\[
\begin{array}{c}
(0,1) \\
\end{array}
\]

```plaintext

```
Let \((v_1, v_2, \ldots, v_n)\) be a **linear extension** of \(P\); this means a list of all elements of \(P\) (each only once) such that \(i < j\) whenever \(v_i < v_j\).

Cameron and Fon-der-Flaass showed that

\[
\mathbf{r} = t_{v_1} \circ t_{v_2} \circ \ldots \circ t_{v_n}.
\]

Hugh Thomas and Nathan Williams call this *Rowmotion in slow motion* [ThWi17].

Example: Re-coordinatizing \(P = [a] \times [b] = [0, r] \times [0, s]\), sorry! Then apply \(t_{(0,1)}\), which adds \((0, 1)\) to the order ideal:
Let \((v_1, v_2, \ldots, v_n)\) be a **linear extension** of \(P\); this means a list of all elements of \(P\) (each only once) such that \(i < j\) whenever \(v_i < v_j\).

Cameron and Fon-der-Flaass showed that

\[r = t_{v_1} \circ t_{v_2} \circ \ldots \circ t_{v_n}. \]

Hugh Thomas and Nathan Williams call this *Rowmotion in slow motion* [ThWi17].

Example: Re-coordinatizing \(P = [a] \times [b] = [0, r] \times [0, s]\), sorry!

Finally apply \(t_{(0,0)}\), which changes nothing:

```
(1, 1)
   /   \
(1, 0)   (0, 1)
   /     /
(0, 1)   (0, 0)
   \
(0, 0)
```
Classical rowmotion: the toggling definition

- Let \((v_1, v_2, \ldots, v_n)\) be a **linear extension** of \(P\); this means a list of all elements of \(P\) (each only once) such that \(i < j\) whenever \(v_i < v_j\).
- Cameron and Fon-der-Flaass showed that
 \[
 r = t_{v_1} \circ t_{v_2} \circ \ldots \circ t_{v_n}.
 \]
- Hugh Thomas and Nathan Williams call this **Rowmotion in slow motion** [ThWi17].

Example: Re-coordinatizing \(P = [a] \times [b] = [0, r] \times [0, s]\), sorry!

So this is \(S \rightarrow r(S)\):

\[
\begin{array}{ccc}
(1, 1) & \rightarrow & (1, 1) \\
(1, 0) & & (0, 1) \\
(0, 0) & & (0, 0)
\end{array}
\]
Toggling Independent Sets of Path Graphs
Definition
An independent set of a graph is a subset of the vertices that does not contain any adjacent pair.

Let \mathcal{I}_n denote the set of independent sets of the n-vertex path graph P_n. We usually refer to an independent set by its binary representation.

Example
\[
\begin{array}{cccccccc}
\bullet & \circ & \bullet & \circ & \bullet & \circ & \circ
\end{array}
\]
is written 1010100.
Definition

An independent set of a graph is a subset of the vertices that does not contain any adjacent pair.

Let \mathcal{I}_n denote the set of independent sets of the n-vertex path graph P_n. We usually refer to an independent set by its binary representation.

Example

\[\begin{array}{cccccc}
\bullet & \circ & \bullet & \circ & \bullet & \circ \end{array} \] is written 1010100.

In this case, \mathcal{I}_n refers to all binary strings with length n that do not contain the subsequence 11.
Toggles

Definition (Striker - generalized earlier concept of Cameron and Fon-der-Flaass)

For $1 \leq i \leq n$, the map $\tau_i : \mathcal{I}_n \to \mathcal{I}_n$, the toggle at vertex i is defined in the following way. Given $S \in \mathcal{I}_n$:

- if $i \in S$, τ_i removes i from S,
- if $i \notin S$, τ_i adds i to S, if $S \cup \{i\}$ is still independent,
- otherwise, $\tau_i(S) = S$.

Formally,

$$
\tau_i(S) = \begin{cases}
S \setminus \{i\} & \text{if } i \in S \\
S \cup \{i\} & \text{if } i \notin S \text{ and } S \cup \{i\} \in \mathcal{I}_n \\
S & \text{if } i \notin S \text{ and } S \cup \{i\} \notin \mathcal{I}_n
\end{cases}
$$
Proposition

Each toggle \(\tau_i \) is an involution, i.e., \(\tau_i^2 \) is the identity. Also, \(\tau_i \) and \(\tau_j \) commute if and only if \(|i - j| \neq 1 \).

Definition

The **toggle group** is the group generated by the \(n \) toggles.

Definition

Let \(\varphi := \tau_n \circ \cdots \circ \tau_2 \circ \tau_1 \), which applies the toggles left to right.

Example

In \(I_5 \), \(\varphi(10010) = 01001 \) by the following steps:

\[
10010 \xrightarrow{\tau_1} 00010 \xrightarrow{\tau_2} 01010 \xrightarrow{\tau_3} 01010 \xrightarrow{\tau_4} 01000 \xrightarrow{\tau_5} 01001.
\]
Here is an example φ-orbit in I_7, containing 1010100. In this case, $\varphi^{10}(S) = S$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^2(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^3(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^4(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^5(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^6(S)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^7(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^8(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^9(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Here is an example φ-orbit in \mathcal{I}_7, containing 1010100. In this case, $\varphi^{10}(S) = S$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^2(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^3(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^4(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^5(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^6(S)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^7(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^8(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^9(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total:</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^2(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^3(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^4(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^5(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^6(S)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^7(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^8(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^9(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total:</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Theorem (Joseph-R.[JR18])

Define $\chi_i : I_n \rightarrow \{0,1\}$ to be the indicator function of vertex i.

For $1 \leq i \leq n$, $\chi_i - \chi_{n+1-i}$ is 0-mesic on φ-orbits of I_n.

Also $2\chi_1 + \chi_2$ and $\chi_{n-1} + 2\chi_n$ are 1-mesic on φ-orbits of I_n.
<table>
<thead>
<tr>
<th>S</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^2(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^3(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^4(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^5(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^6(S)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^7(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^8(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^9(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{10}(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{11}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{12}(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{13}(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{14}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>$\varphi(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^2(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^3(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^4(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^5(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^6(S)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^7(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^8(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^9(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{10}(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{11}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{12}(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{13}(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{14}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>(\varphi(S))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi^2(S))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(\varphi^3(S))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\varphi^4(S))</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi^5(S))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi^6(S))</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi^7(S))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\varphi^8(S))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi^9(S))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi^{10}(S))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\varphi^{11}(S))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi^{12}(S))</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\varphi^{13}(S))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\varphi^{14}(S))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Idea of the proof that \(\chi_i - \chi_{n+1-i} \) **is 0-mesic:** Given a 1 in an “orbit board”, if the 1 is not in the right column, then there is a 1 either

- 2 spaces to the right,
- or 1 space diagonally down and right,

and never both.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>$\varphi(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^2(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^3(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^4(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^5(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^6(S)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^7(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^8(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^9(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{10}(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{11}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{12}(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{13}(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{14}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Idea of the proof that $\chi_i - \chi_{n+1-i}$ is 0-mesic: This allows us to partition the 1’s in the orbit board into **snakes** that begin in the left column and end in the right column.

This technique is similar to one used by Shahrzad Haddadan to prove homomesy in orbits of an invertible map called “winching” on k-element subsets of $\{1, 2, \ldots, n\}$.
<table>
<thead>
<tr>
<th>S</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^2(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^3(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^4(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^5(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^6(S)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^7(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^8(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^9(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{10}(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{11}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{12}(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{13}(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{14}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Idea of the proof that $\chi_i - \chi_{n+1-i}$ is 0-mesic: Each snake corresponds to a composition of $n - 1$ into parts 1 and 2. Also, any snake determines the orbit!

- 1 refers to 1 space diagonally down and right
- 2 refers to 2 spaces to the right
<table>
<thead>
<tr>
<th>S</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^2(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^3(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^4(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^5(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^6(S)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^7(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^8(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^9(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{10}(S)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{11}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{12}(S)$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\varphi^{13}(S)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\varphi^{14}(S)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total: | 6 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 6 |

Red snake composition: 221121

Purple snake composition: 211212

Orange snake composition: 112122

Green snake composition: 121221

Blue snake composition: 212211

Brown snake composition: 122112
Besides homomesy, this snake representation can be used to explain a lot about the orbits (particularly the orbit sizes, i.e. the number of independent sets in an orbit).

- When n is even, all orbits have odd size.
- “Most” orbits in I_n have size congruent to $3(n - 1) \text{ mod } 4$.
- The number of orbits of I_n (OEIS A000358)
- And much more...

Using Coxeter theory, it’s possible to extend our main theorem to other “Coxeter elements” of toggles. We get the same homomesy if we toggle exactly once at each vertex in any order.
I’m happy to talk about this further with anyone who’s interested.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html
I’m happy to talk about this further with anyone who’s interested.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

Thanks very much for coming to this talk!

[GrRo16] Darij Grinberg and Tom Roby, Iterative properties of birational
References 2

