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Abstract

Abstract: Dynamical algebraic combinatorics explores actions on sets of
discrete combinatorial objects, many of which can be built up by small
local changes, e.g., Schützenberger’s promotion and evacuation, or the
rowmotion map on order ideals. There are strong connections to the
combinatorics of representation theory and with Coxeter groups. Birational
liftings of these actions are related to the Y-systems of statistical
mechanics, thereby to cluster algebras, in ways that are still relatively
unexplored.

The term "homomesy" (fka "combinatorial ergodicity") describes the
following widespread phenomenon: Given a group action on a set of
combinatorial objects, a statistic on these objects is called "homomesic" if
its average value is the same over all orbits. Along with its intrinsic interest
as a kind of "hidden invariant", homomesy can be used to prove certain
properties of the action, e.g., facts about the orbit sizes. Homomesy can
often be found among the same dynamics that afford cyclic sieving. Proofs
of homomesy often involve developing tools that further our understanding
of the underlying dynamics, e.g., by finding an equivariant bijection.

This talk will be a introduction to these ideas, giving a number of
examples of such actions and pointing out connections to other areas.
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Some themes in dynamical algebraic combinatorics

1 Periodicity/order;

2 Orbit structure;

3 Homomesy;

4 Equivariant bijections; and

5 Lifting from combinatorial to piecewise-linear and birational
settings.



Cyclic rotation of

binary strings
“Immer mit den einfachsten Beispielen anfangen.” —
David Hilbert



Cyclic rotation of binary strings

Let Sn,k be the set of length n binary strings with k 1s.
Let CR : Sn,k → Sn,k be rightward cyclic rotation.

Example
Cyclic rotation for n = 6, k = 2:

101000 7−→ 010100
CR

Periodicity is clear here. The map has order n = 6.
Orbit structure is very nice; every orbit size must divide n.
Homomesy? Need a statistic, first.
Equivariant bijection? No need.
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Cyclic rotation of binary strings

An inversion of a binary string is a pair of positions (i , j) with i < j
such that there is a 1 in position i and a 0 in position j .

Example
Orbits of cyclic rotation for n = 6, k = 2:

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2
100010 5 000011 0
010001 3 100001 4

Average 4 Average 4 Average 4
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Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic”) f : S → K where K is a field of
characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a
constant c ∈ K such that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c.

In this case, we say that the function f is homomesic with average
c (also called c-mesic) under the action of τ on S .



Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic”) f : S → K where K is a field of
characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a
constant c ∈ K such that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c.

In this case, we say that the function f is homomesic with average
c (also called c-mesic) under the action of τ on S .



Homomesy

Theorem (Propp & R. [PrRo15, §2.3])

Let inv(s) denote the number of inversions of s ∈ Sn,k .

Then the function inv : Sn,k → Q is homomesic with average k(n−k)
2

with respect to cyclic rotation on Sn,k .

Proof.
Consider superorbits of length n. Show that replacing “01” with
“10” in a string s leaves the total number of inversions in the
superorbit generated by s unchanged (and thus the average since our
superorbits all have the same length).
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Cyclic rotation of binary strings

Example

Inversions
String String Change
101000 011000 -1
010100 001100 -1
001010 000110 -1
000101 000011 -1
100010 100001 -1
010001 110000 +5

There are other homomesic statistics as well:
Let χj(s) := sj , the jth bit of the string s. Can you see why this is
homomesic?



Bulgarian Solitaire



Homomesy: A more general definition

There are some cases where we find a similar phenomenon, but
where the map no longer has finite orbits. Here is a more general
definition of homomesy that is useful for some purposes.

Definition

Let τ be an self-map on a discrete set of objects S , and f be a
statistic on S . We say f is homomesic if the value of

lim
N→∞

1
N

N−1∑
i=0

f (τ i (x)) = c

is independent of the starting point x ∈ S . (Also, f is c-mesic.)

This clearly reduces to the earlier definition in the case where we
have an invertible action with finite orbits.



Example 2: Bulgarian solitaire

Given a way of dividing n identical chips into one or more heaps
(represented as a partition λ of n), define b(λ) as the partition of n
that results from removing a chip from each heap and putting all the
removed chips into a new heap.

First surfaced as a puzzle in Russia around 1980, with a
solution by Andrei Toom in Kvant; later popularized in a 1983
Martin Gardiner column; see survey of Brian Hopkins [Hop12].
Initial puzzle: starting from any of 176 partitions of 15, one
ends at (5, 4, 3, 2, 1).

Dynamical Algebraic Combinatorics and the Homomesy Phenomenon 7

and placing them together to form a new pile. We set (l ) to be the partition obtained in this way, whose parts are the
nonzero elements among `,l1�1,l2�1, . . . ,l`�1. Note that the newly created part of size ` can range in size from 1
to n, making it hard to write a concise formula for (l ) in terms of the parts of l .

Example 8. Bulgarian solitaire For n = 15, one trajectory of Bulgarian solitaire is:

115 15 14,1 13,2 12,2,1 11,3,1

10,3,29,3,2,18,4,2,17,4,3,17,4,3,16,4,3,25,4,3,2,1

This process first surfaced as a puzzle in Russia around 1980, and a solution by Andrei Toom was published in
Kvant [Too81]. A few years later it was popularized in one of Martin Gardner’s Mathematical Games columns [Gard83].
The puzzle was to show that no matter which of the 176 partitions of 15 one selects for the initial sizes of the piles,
one always eventually ends up at the “staircase” partition (5,4,3,2,1), which is a fixed point of the action (as in the
above example). It turns out that if n is a triangular number (so such a staircase partition exists), then any sequence
of moves eventually leads to this fixed point of the action; however, in general the action can exhibit more complex
dynamical behavior. (See Figure 2.) Some pointers to more recent literature and more information about the history of
this problem, including the fanciful, inaccurate (but easily googlable) name, are available in Brian Hopkins’s expository
survey [Hop12].
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Fig. 2: The action of Bulgarian solitaire on partitions of n = 8

Definition 2. Let S be a finite set with a (not necessarily invertible) map t : S !S (called a self-map). Applying
the map iteratively to any x 2S eventually yields a recurrent cycle, and the recurrent set is the union of these cycles.
(See Figure 2.) We call a statistic f : S !K homomesic if the average of f is the same over every recurrent cycle. It
is clear that if t is an invertible action on a finite set S, then this definition specializes to the original one.

Example 9. Number of parts under Bulgarian solitaire on partitions of nnn Consider the example of Bulgarian
solitaire for n = 8 as displayed in Figure 2. Let the statistic f (l ) := `(l ), the number of parts. We claim that this is



Bulgarian solitaire: “orbits” are now “trajectories”

E.g., for n = 8, two trajectories are

53 → 422 → 3311 → 422 → . . .

and

62 → 521 → 431 → 332 → 3221 → 4211 → 431 → . . .

(the new heaps are underlined).
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Bulgarian solitaire: homomesies
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Let φ(λ) be the number of parts of λ. In the forward orbit of λ = (5, 3),
the average value of φ is (4 + 3)/2 = 7/2; while for λ = (6, 2), the
average value of φ is (3 + 4 + 4 + 3)/4 = 14/4 = 7/2.

Proposition (“Bulgarian Solitaire has homomesic number of parts”)

If n = k(k − 1)/2 + j with 0 ≤ j < k , then for every partition λ of n, the
ergodic average of φ on the forward orbit of λ is k − 1 + j/k .

(n = 8 corresponds to k = 4, j = 2.) So the number-of-parts statistic on
partitions of n is homomesic wrt/b; similarly for “size of (kth) largest part”.



Further work on non-invertible maps and possible directions

Colin Defant has recently done some work on non-invertible maps
that are variants of pop-stack sorting (including a dual version called
pop-tsack torsing) [Def21+]. In his talk on this at the BIRS-DAC
workshop at UBCO, he highlighted the following questions:

Let f : X → X be a noninvertible map on a finite set X . Define the
forward orbit of x ∈ X to be Of (X ) := {x , f (x), f 2(x), . . . }.

What are the periodic points of f ?
What is the image of f ?
How can we compute the number of preimages of some x0 ∈ X
under f ?
What is the maximum number of preimages an element of X
can have?
How many elements have exactly 1 preimage?
What is maxx∈X #Of (X )? For which x is the max attained?
Which elements x ∈ X maximize Of (X )?
How big is Of (X ) on average?



Ignore transience (for the rest of this talk)

Since S is finite, every forward orbit is eventually periodic, and the
ergodic average of φ for the forward orbit that starts at x is just the
average of φ over the periodic orbit that x eventually goes into.

This definition also works in situations where S is infinite. But for
rest of this talk, we’ll restrict attention to maps τ that are invertible
on S , where S is finite, so our initial definition (below) makes sense.

Definition ([PrRo15])

Given an (invertible) action τ on a finite set of objects S , call a
statistic f : S → C homomesic with respect to (S , τ) if the average
of f over each τ -orbit O is the same constant c for all O, i.e.,

1
#O

∑
s∈O

f (s) = c does not depend on the choice of O.

(Call f c-mesic for short.)
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Coxeter Toggling

Independent Sets

of Path Graphs



Independent Sets of a Path Graph

Definition
An independent set of a graph is a subset of the vertices that does
not contain any adjacent pair.

Let In denote the set of independent sets of the n-vertex path graph
Pn. We usually refer to an independent set by its binary
representation.

Example
is written 1010100.

In this case, In refers to all binary strings with length n that do not
contain the factor 11.
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Toggles

Definition (Striker - generalized earlier concept of Cameron
and Fon-der-Flaass)

For 1 ≤ i ≤ n, the map τi : In → In, the toggle at vertex i is
defined in the following way. Given S ∈ In:

if i ∈ S , τi removes i from S ,
if i ̸∈ S , τi adds i to S , if S ∪ {i} is still independent,
otherwise, τi (S) = S .

Formally,

τi (S) =


S \ {i} if i ∈ S
S ∪ {i} if i ̸∈ S and S ∪ {i} ∈ In
S if i ̸∈ S and S ∪ {i} ̸∈ In

.



Toggles

Proposition

Each toggle τi is an involution, i.e., τ2
i is the identity. Also, τi and τj

commute if and only if |i − j | ≠ 1.

Definition
Let φ := τn ◦ · · · ◦ τ2 ◦ τ1, which applies the toggles left to right.

Example

In I5, φ(10010) = 01001 by the following steps:

10010 τ17−→ 00010 τ27−→ 01010 τ37−→ 01010 τ47−→ 01000 τ57−→ 01001.



Order & Orbits

The order of this action grows quite fast as n increases and is
difficult to describe in general. It is the LCM of the orbit sizes,
which are not all divisors of some small number (relative to n):
2, 3, 6, 15, 24, 231, 210, 1989, 240, 72105, 18018, 3354725, . . .
For n = 6 the three orbits have sizes 3, 7, 11, giving order
LCM(3,7,11)= 231.
The number of orbits appeared to be OEIS A000358 (“Number
of binary necklaces of length n with no subsequence 00”) , but
we didn’t understand why at first.
This means that this action is unlikely to exhibit interesting
Cyclic Sieving.
But we can still find homomesy.



Homomesy

Here is an example φ-orbit in I7, containing 1010100. In this case,
φ10(S) = S .

1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1

Total: 4 2 3 2 3 2 4
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Theorem (Joseph–R. [JR18])

Define χi : In → {0, 1} to be the indicator function of vertex i .

For 1 ≤ i ≤ n, χi − χn+1−i is 0-mesic on φ-orbits of In.
Also 2χ1 + χ2 and χn−1 + 2χn are 1-mesic on φ-orbits of In.
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Idea of the proof that χi − χn+1−i is 0-mesic: Given a 1 in an “orbit board”, if
the 1 is not in the right column, then there is a 1 either

2 spaces to the right,
or 1 space diagonally down and right,

and never both.
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Idea of the proof that χi − χn+1−i is 0-mesic: This allows us to partition the 1’s
in the orbit board into snakes that begin in the left column and end in the right
column.

This technique is similar to one used by Shahrzad Haddadan to prove homomesy
in orbits of an invertible map called “winching” on k-element subsets of
{1, 2, . . . , n}.



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Idea of the proof that χi − χn+1−i is 0-mesic: Each snake corresponds to a
composition of n − 1 into parts 1 and 2. Also, any snake determines the orbit!

1 refers to 1 space diagonally down and right
2 refers to 2 spaces to the right



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Red snake composition: 221121
Purple snake composition: 211212
Orange snake composition: 112122
Green snake composition: 121221
Blue snake composition: 212211

Brown snake composition: 122112



More Consequences of Snakes

Besides homomesy, this snake representation can be used to explain
a lot about the orbits (particularly the orbit sizes, i.e. the number of
independent sets in an orbit).

When n is even, all orbits have odd size.
“Most” orbits in In have size congruent to 3(n − 1) mod 4.
The number of orbits of In (OEIS A000358)
And much more...

Using elementary Coxeter theory, it’s possible to extend our main
theorem to other “Coxeter elements” of toggles. We get the same
homomesy if we toggle exactly once at each vertex in any order.

Hanaoka & Sadahiro have generalized the “palindromic” homomesy
to the case of “m-independent sets”, leading them to an interesting
variation of bitstring rotation [HS22]. Video lecture from BIRS-DAC
(Kelowna) is available at https://www.birs.ca/events/2021/
5-day-workshops/21w5514/videos

https://www.birs.ca/events/2021/5-day-workshops/21w5514/videos
https://www.birs.ca/events/2021/5-day-workshops/21w5514/videos


Rowmotion on Order

Ideals of a Poset



Rowmotion: an invertible operation on order ideals

We define the (cyclic) group action of rowmotion on the set of
order ideals J (P) via the map Row : J (P) → J (P) given by the
following three-step process.

Start with an order ideal, and

1 Θ: Take the complement (giving an order filter)
2 ∇: Take the minimal elements (giving an antichain)
3 ∆−1: Saturate downward (giving a order ideal )

# #

ρJ :  # # −→

  

  

#   −→

# #

# #

#   −→

# #

# #

#   

  

This map and its inverse have been considered with varying degrees of
generality, by many people more or less independently (using a variety of
nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron
and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and
Williams, who named it rowmotion.
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Dynamical properties of rowmotion: cardinality is homomesic

Theorem (Brouwer–Schrijver 1974)

On [a]× [b], rowmotion is periodic with period a+ b.

Theorem (Fon-Der-Flaass 1993)

On [a]× [b], every rowmotion orbit has length (a+ b)/d , some d
dividing both a and b.

Theorem (Propp, R.)

Let O be an arbitrary rowmotion orbit in J ([a]× [b]). Then

1
#O

∑
I∈O

#I =
ab

2
.



Ideals in [a]× [b]: the case a = b = 2

We have an orbit of size 2 and an orbit of size 4:

2 2

0 1 3 4

Within each orbit, the average order ideal has cardinality ab/2 = 2.



Toggling order ideals

Cameron and Fond-Der-Flaass showed how to write rowmotion on
order ideals (equivalently order filters) as a product of simple
involutions called toggles.

Definition (Cameron and Fon-Der-Flaass 1995)

Let J (P) be the set of order ideals of a finite poset P .
Let e ∈ P . Then the toggle corresponding to e is the map
Te : J (P) → J (P) defined by

Te(U) =


U ∪ {e} if e ̸∈ U and U ∪ {e} ∈ J (P),
U \ {e} if e ∈ U and U \ {e} ∈ J (P),
U otherwise.

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom along a linear extension
of P gives rowmotion on order ideals of P .
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Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρ-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 4 + 3 + 1 + 2 + 4 + 3

8
=

5
2
;

0 + 3 + 5 + 6
4

=
7
2
;

2 + 1
2

=
3
2
. Darn!



Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρ-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average rank-alternating cardinality for each orbit we find:

1 + 2 + 2 + 1 + 1 + 2 + 2 + 1
8

=
1 + 2 + 2 + 1

4
=

2 + 1
2

=
3
2

Yay!



Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan)

Let P be the root poset of type An. If we assign an element x ∈ P
weight wt(x) = (−1)rank(x), and assign an order ideal I ∈ J (P)
weight f (I ) =

∑
x∈I wt(x), then f is homomesic under rowmotion

and promotion, with average n/2.



Aside: Rowmotion on antichains

We’ve already seen examples of Rowmotion ρ on J(P), the set of
order ideals of a poset P .

# #

ρJ :  # # −→

  

  

#   −→

# #

# #

#   −→

# #

# #

#   

  

We can also define it as an operator ρA on the set of antichains of
P by shifting the waltz beat by 1:

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

Following Jessica Striker, Michael Joseph defined antichain toggles and
showed that ρA can be written as a product of these toggles moving from
bottom to top along any linear extension. These toggles commute less
frequently than order-ideal toggles, giving a different, though related,
theory.



Panyushev’s conjecture (AST’s theorem)

One of the earliest examples of homomesy appeared around the time
Propp and Roby isolated the phenomenon.

Let ∆ be a (reduced irreducible) root system in Rn. (Pictures soon!)

Choose a system of positive roots and make it a poset of rank n by
decreeing that y covers x iff y − x is a simple root.

Theorem (Armstrong–Stump–Thomas [AST11], Conj. [Pan09])

Let O be an arbitrary ρA-orbit. Then

1
#O

∑
A∈O

#A =
n

2
.

In our language, the cardinality statistic is homomesic with respect to the
action of rowmotion on antichains in root posets.



Picture of root posets

Here are the classes of posets included in Panyushev’s conjecture.

(Graphic courtesy of Striker–Williams.)



Panyushev’s conjecture: The An case, n = 2

Here we have just an orbit of size 2 and an orbit of size 3:

0 2 1

1 1

1

Within each orbit, the average antichain has cardinality n/2 = 1.



Example of antichain rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

 # #

#

 # −→

# # #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

# #  

#

#  ↰

# # #

#

# # −→

# # #

#

# # −→

   

#

  −→

# # #

 

# # ↰

# # #

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

0 + 3 + 2 + 1
4

=
2 + 1

2
=

3
2
.



Ideals in [a]× [b]: the case a = b = 2

Back to order-ideal rowmotion. . .

FIX

For the poset P = [2]× [2] have one orbit of size 2 and one orbit of
size 4:

2 2

0 1 3 4

Within each orbit, the average order ideal has cardinality ab/2 = 2.



Ideals in [a]× [b]: file-cardinality is homomesic

1 1 0 0 1 1

0 0 0 0 1 0 1 1 1 1 2 1

Within each orbit, the average order ideal has

1/2 of a violet element, 1 red element, and 1/2 of a brown element.



Ideals in [a]× [b]: file-cardinality is homomesic

For 1 − b ≤ k ≤ a− 1, define the kth file of [a]× [b] as

{(i , j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, i − j = k}.

For 1 − b ≤ k ≤ a− 1, let hk(I ) be the number of elements of I in
the kth file of [a]× [b], so that #I =

∑
k hk(I ).

Theorem (Propp, R.)

For every ρ-orbit O in J([a]× [b]):

• 1
#O

∑
I∈O

hk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.

• 1
#O

∑
I∈O

#I =
ab

2
.



Piecewise-linear and

birational liftings



Generalizing to the piecewise-linear setting

The decomposition of classical rowmotion into toggles allows us to
define a piecewise-linear (PL) version of rowmotion acting on
functions on a poset.

For a finite poset P , let P̂ denote P with an extra minimal element
0̂ and an extra maximal element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P̂ → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y)
whenever x ≤P y .

For each x ∈ P , define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz⋗x f (z) + maxw⋖x f (w)− f (x) if y = x ,

where z ⋗ x means z covers x and w ⋖ x means x covers w .
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Generalizing to the piecewise-linear setting

For each x ∈ P , define the flip-map σx : O(P) → O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz⋗x f (z) + maxw⋖x f (w)− f (x) if y = x ,

where z ⋗ x means z covers x and w ⋖ x means x covers w .

Note that the interval [minz⋗x f (z),maxw⋖x f (w)] is precisely the
set of values that f ′(x) could have so as to satisfy the
order-preserving condition.

If f ′(y) = f (y) for all y ̸= x , the map that sends

f (x) to min
z⋗x

f (z) + max
w⋖x

f (w)− f (x)

is just the affine involution that swaps the endpoints of the interval.



Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z⋗x

f (z) + max
w⋖x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9



Composing flips

Just as we can apply toggle-maps from top to bottom, we can apply
flip-maps from top to bottom, to get piecewise-linear rowmotion:

.8 .6 .6

.4 .3
σN

→ .4 .3
σW

→ .3 .3

.1 .1 .1

.6 .6
σE

→ .3 .4
σS

→ .3 .4

.1 .2

(We successively flip at N = (1, 1), W = (1, 0), E = (0, 1), and
S = (0, 0) in order.)



Composing flips and example of PL rowmotion orbit

We can apply flip-maps from top to bottom (successively flipping at
N = (1, 1), W = (1, 0), E = (0, 1), and S = (0, 0) in order.), to get
piecewise-linear rowmotion:

.8 .6 .6 .6 .6

.4 .3
σN

→ .4 .3
σW

→ .3 .3
σE

→ .3 .4
σS

→ .3 .4

.1 .1 .1 .1 .2

Here’s an orbit of this map (τ = σS ◦ σE ◦ σW ◦ σN), which again
has period 4.

.8 .6 .8 .9

τ

vv

.4 .3 τ→ .3 .4 τ→ .7 .6 τ→ .6 .7

.1 .2 .4 .2



De-tropicalizing to birational maps

In the tropical semiring, one replaces the standard binary ring
operations (+, ·) with the tropical operations (max,+). In the
piecewise-linear (PL) category of the order polytope studied above,
our flipping-map at x replaced the value of a function f : P → [0, 1]
at a point x ∈ P with f ′, where

f ′(x) := min
z⋗x

f (z) + max
w⋖x

f (w)− f (x)

We can “detropicalize” this flip map and apply it to an assignment
f : P → R(x) of rational functions to the nodes of the poset, using
that

min(zi ) = −max(−zi ), to get the birational toggle map

(Tx f )(x) = f ′(x) =

∑
w⋖x f (w)

f (x)
∑

z⋗x
1

f (z)



Birational rowmotion: definition

For a field K, a K-labelling of P will mean a function
f : P̂ → K. We always set f (0̂) = f (1̂) = 1.
For any v ∈ P , define the birational v-toggle as the rational
map

Tv : KP̂ 99K KP̂ defined by (Tv f ) (w) =

∑
P̂∋u⋖v

f (u)

f (v)
∑

P̂∋u⋗v

1
f (u)

for

w = v .
(We leave (Tv f ) (w) = f (w) when w ̸= v .)

This is a local change only to the label at v , and T 2
v = id (on

the range of Tv ).
We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P .
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v = id (on
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We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P .



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 × 2-rectangle:

poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension
((1, 1), (1, 0), (0, 1), (0, 0)).

That is, toggle in the order “top, left, right, bottom”.
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poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension
((1, 1), (1, 0), (0, 1), (0, 0)).

That is, toggle in the order “top, left, right, bottom”.



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 × 2-rectangle:

original labelling f labelling T(1,1)f

1

z

x y

w

1

1

(x+y)
z

x y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 × 2-rectangle:

original labelling f labelling T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 × 2-rectangle:

original labelling f labelling T(0,1)T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz

w(x+y)
yz

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2 × 2-rectangle:

original labelling f labelling T(0,0)T(0,1)T(1,0)T(1,1)f = ρB f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz

w(x+y)
yz

1
z

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion orbit on a product of chains

Example: Iterating this procedure we get

(x+y)
z

ρB f = (x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

ρ2
B f = 1

y
1
x

z
x+y ,

1
w

ρ3
B f = yz

(x+y)w
xz

(x+y)w

xy
(x+y)w ,

z

ρ4
B f = x y

w .

Notice that ρ4
B f = f , which generalizes to ρr+s+2

B f = f for
P = [0, r ]× [0, s] [Grinberg-R 2015]. Notice also “antipodal
reciprocity”.



Birational rowmotion orbit on a product of chains

Example: Iterating this procedure we get

(x+y)
z

ρB f = (x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

ρ2
B f = 1

y
1
x

z
x+y ,

1
w

ρ3
B f = yz

(x+y)w
xz

(x+y)w

xy
(x+y)w ,

z

ρ4
B f = x y

w .

Notice that ρ4
B f = f , which generalizes to ρr+s+2

B f = f for
P = [0, r ]× [0, s] [Grinberg-R 2015]. Notice also “antipodal
reciprocity”.



Why study this generalization?

Motivations and Connections

Classical rowmotion is closely related to the Auslander-Reiten
translation in quivers arising in certain special posets (e.g.,
rectangles) [Yil17].
This generalization implies the results at the PL and
combinatorial level (but not vice-versa).
Birational rowmotion can be related to Y -systems of type
Am × An described in Zamolodchikov periodicity [Rob16, §4.4].
The orbits of these maps all have natural
homomesies [PrRo15, EiPr13/21].
Periodicity of these systems is generally nontrivial to prove.



Proof of periodicity via Grassmannian embedding

In 2014, Grinberg and I proved both theorems (for commutative
K).

Proof outline (inspired by A. Y. Volkov, arXiv:hep-th/0606094):
WLOG assume K is a field (because our claims boil down to
polynomial identities).
Show that “almost all” labellings of P are in the image of a
certain map Grasp0 from the matrix space Kp×(p+q) to KP̂ .
Construct a commutative diagram

where ρ is (more or less) rotating the matrix horizontally (last
column to front).
Conclude that Rp+q = id because ρp+q = id.
Reciprocity also easy using Grasp0.

https://arxiv.org/abs/hep-th/0606094
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Birational homomesy on files of J([0, r ]× [0, s])

The poset [0, 1]× [0, 1] has three files, {(1, 0)}, {(0, 0), (1, 1)}, and
{(0, 1)}.

Multiplying over all iterates of birational rowmotion in a given file:

4∏
k=1

ρkB(f )(1, 0) =
(x + y)w

xz

1
y

yz

(x + y)w
(x) = 1,

4∏
k=1

ρkB(f )(0, 0)ρ
k
B(f )(1, 1) =

1
z

x + y

z

z

x + y

(x + y)w

xy

xy

(x + y)w

1
w

(w) (z) = 1,

4∏
k=1

ρkB(f )(0, 1) =
(x + y)w

yz

1
x

xz

(x + y)w
(y) = 1.

Each of these products equaling one is the manifestation, for the poset of
a product of two chains, of homomesy along files at the birational level.
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Birational homomesy on files of J([0, r ]× [0, s])

Theorem ([GrRo15b, Thm. 30, 32])

(1) The birational rowmotion map ρB on the product of two chains
P = [0, r ]× [0, s] is periodic, with period r + s + 2.

(2) The birational rowmotion map ρB on the product of two chains
P = [0, r ]× [0, s] satisfies the following reciprocity:
ρi+j+1
B f (i , j) = 1/ρ0

B f (r − i , s − j) = 1
xr−i,s−j

.

Theorem (Musiker–R [MR19])

Given a file F in [0, r ]× [0, s],
r+s+1∏
k=0

∏
(i ,j)∈F

ρkB f (i , j) = 1.

The proof of this involves constructing a complicated formula for the
ρkB in terms of families of non-intersecting lattice paths, from which
one can also deduce periodicity and the other geometric homomesies
of this map, first proved by Grinberg-R [GrRo15b, Thm. 32].
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Noncommutative Liftings

Much of this story lifts to skew fields, where the variables are not
assumed to commute.

In this setting toggles are no longer involutions, but the NC analogue
of ρB can be defined, and their inverses can be included in the study.

A version of periodicity miraculously still holds, though even checking
this computationally with rational expressions in noncommutative
variables was a challenge.

In parallel with the lifting of ρ to ρB , there is a lifting of ρA via
Stanley’s Chain polytope to birational (BAR-motion) and NC
(NAR-motion) [JR20].

The Stanley–Thomas word which we used to show periodicity and
homomesy for ρA lifts all the way to the NC setting, where it still
shows homomesy. However, it does not show periodicity outside the
combinatorial realm, since it no longer losslessly encodes the
labelings [JR21].

Quite recently Darij Grinberg and I have found a proof of periodicity
for rectangles, which requires its own talk.



Noncommutative Birational rowmotion: definition

For any v ∈ P , define the birational v-toggle as the partial
map Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =


f (w) , if w ̸= v ; ∑

u∈P̂;
u⋖v

f (u)

 · f (v) · ∑
u∈P̂;
u⋗v

f (u), if w = v

for all w ∈ P̂ .
Here (and in the following), m means m−1 whenever m ∈ K.

This is a partial map. If any of the inverses does not exist in K,
then Tv f is undefined!
We define (noncommutative) birational rowmotion as the
partial map

R := Tv1 ◦ Tv2 ◦ · · · ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, . . . , vn) is a linear extension of P .
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Noncommutative rowmotion on a 2 × 2 rectangle

Here is R0f :
b

z

x y

w

a

This confirms the “periodicity” theorem for NCBR when
p = q = 2.



Noncommutative rowmotion on a 2 × 2 rectangle

Here is R1f :

b

(x + y)zb

wx(x + y)zb wy(x + y)zb

azb

a

This confirms the “periodicity” theorem for NCBR when
p = q = 2.



Noncommutative rowmotion on a 2 × 2 rectangle

Here is R2f :

b

w (x + y) b

a · x + y · x (x + y) b a · x + y · y (x + y) b

abz · x + y · b

a

This confirms the “periodicity” theorem for NCBR when
p = q = 2.



Noncommutative rowmotion on a 2 × 2 rectangle

Here is R3f :

b

awb

... abz · x + y · x + y · y · (x + y)wb

ab · x + y · wb

a

This confirms the “periodicity” theorem for NCBR when
p = q = 2.



Noncommutative rowmotion on a 2 × 2 rectangle

Here is R4f :

b

abzab

... ab · x + y · x + y · y (x + y) (x + y) ab

abwab

a

This confirms the “periodicity” theorem for NCBR when
p = q = 2.



Noncommutative rowmotion on a 2 × 2 rectangle

Here is R4f :

b

abzab

abxab abyab

abwab

a

(after nontrivial simplifications).

This confirms the “periodicity” theorem for NCBR when
p = q = 2.



Noncommutative rowmotion on a 2 × 2 rectangle

Here is R4f :

b

abzab

abxab abyab

abwab

a

This confirms the “periodicity” theorem for NCBR when
p = q = 2.
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Summary and Take Aways

Studying dynamics on objects in algebraic combinatorics is
interesting, particularly with regard to questions of periodicity,
orbit structure, homomesy, and equivariant bijections
Actions that can be built out of smaller, simpler actions (e.g.,
toggles) often have interesting and unexpected properties.
Combinatorial objects are often discrete “shadows” of
continuous PL objects, which in turn reflect algebraic dynamics.
But combinatorial tools are still frequently useful, even at
higher levels.
Much more remains to be explored, perhaps for combinatorial
objects or actions that you work with for other reasons.

Slides for this talk will be available online at: Google “Tom Roby”.

Thanks very much for coming to this talk!

Danke schön für eure Aufmerksamkeit!



Why doesn’t Grasp proof generalize to NC setting?

This looks easy; the devil is in the details (particularly the
“almost all” part: not just Zariski density but also some
rescaling required).

Can this be generalized to arbitrary K ?
In some sense, yes: Replace determinants by
quasideterminants (Gelfand/Retakh, arXiv:q-alg/9705026; see
also arXiv:math/0208146).
Specifically, redefine Grasp0 by

(Grasp0 A) (i , j) = (−1)i q{1:i |i+j :p+j}
0,i+j−1 (A) .

The “algebra” works!
Unfortunately, the technical parts no longer work:

What does “almost all” mean for noncommutative K ?
Can we WLOG assume that K is a skew field?
No: e.g., the identity xyxy = 1 holds in all skew fields but not
in all rings.

We now believe this approach is a dead end.

https://arxiv.org/abs/q-alg/9705026v1
https://arxiv.org/abs/math/0208146
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Unfortunately, the technical parts no longer work:

What does “almost all” mean for noncommutative K ?

Can we WLOG assume that K is a skew field?
No: e.g., the identity xyxy = 1 holds in all skew fields but not
in all rings.

We now believe this approach is a dead end.
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