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Abstract

Abstract: Dynamical Algebraic Combinatorics explores actions on sets
of discrete combinatorial objects, many of which can be built up by small
local changes, e.g., Schutzenberger’s promotion and evacuation, or the
rowmotion map on order ideals. There are strong connections to the
combinatorics of representation theory and with Coxeter groups. Birational
liftings of these actions are related to the Y-systems of statistical
mechanics, thereby to cluster algebras, in ways that are still relatively
unexplored.

The term "homomesy" (coined by Jim Propp and the speaker) describes
the following widespread phenomenon: Given a group action on a set of
combinatorial objects, a statistic on these objects is called "homomesic" if
its average value is the same over all orbits. Along with its intrinsic
interest as a kind of "hidden invariant", homomesy can be used to prove
certain properties of the action, e.g., facts about the orbit sizes. Proofs of
homomesy often involve developing tools that further our understanding of
the underlying dynamics, e.g., by finding an equivariant bijection.

This talk will be a introduction to these ideas, giving a number of
examples of such actions and pointing out connections other areas.
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Analogy & Outline

Dynamical systems (e.g., a pendulum) study invariants (e.g., kinetic energy
PLUS potential energy), and its important to identify these. A variation:
some quantities/measurements vary over time, but have same average
regardless of where the system starts (average angular displacement from
rest). These are complementary to invariants, and have their own story.

THEMES: 1) Periodicity/order ; 2) Orbit structure; 3) Homomesy
4) Equivariant bijections

Cyclic rotation of binary strings and definition of homomesy;
Reiner, Stanton, and White’s Cyclic Sieving Phenomenon;
Bulgarian Solitaire;
Rowmotion map on antichains and order ideals of posets;
Toggling independent sets of path graph; and
Piecewise-linear and birational liftings;
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Cyclic rotation of binary
strings



Cyclic rotation of binary strings

Let
([n]
k

)
be the set of length n binary strings with k 1s.

Let CR :
([n]
k

)
→

([n]
k

)
be rightward cyclic rotation.

Example
n = 6, k = 2

101000 7−→ 010100
CR



Cyclic rotation of binary strings

An inversion of a binary string is a pair of positions (i , j) with i < j
such that there is a 1 in position i and a 0 in position j .

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2
100010 5 000011 0
010001 3 100001 4

Average 4 Average 4 Average 4
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Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic") f : S → K where K is a field of
characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a
constant c ∈ K such that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c.

In this case, we say that the function f is homomesic with average
c (also called c-mesic) under the action of τ on S .
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Homomesy

Theorem (Propp & R.[PrRo15, §2.3])

Let I(s) denote the number of inversions of s ∈
([n]
k

)
.

Then the function I :
([n]
k

)
→ Q is homomesic with average k(n−k)

2
with respect to cyclic rotation on Sn,k .

Proof.
Consider superorbits of length n. Show that replacing “01" with
“10" in a string s leaves the total number of inversions in the
superorbit generated by s unchanged (and thus the average since our
superorbits all have the same length).
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Cyclic rotation of binary strings

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2 100100 6
100010 5 000011 0 010010 4
010001 3 100001 4 001001 2
Average 4 Average 4 Average 4



Cyclic rotation of binary strings

Example

Inversions
String String Change
101000 011000 -1
010100 001100 -1
001010 000110 -1
000101 000011 -1
100010 100001 -1
010001 110000 +5

There are other homomesic statistics as well, e.g., Let 1j(s) := sj ,
the jth bit of the string s. Can you see why this is homomesic?



Homomesy

Since its initial codification about 5 years ago, a large number of
examples of the homomesy phenomenon have been identified across
dynamical algebraic combinatorics. These include:

Promotion of SSYT; Rowmotion of “nice” (e.g., minuscule
heap) posets [PrRo15, StWi11, Had14, RuWa15+] ;

In general, composing certain involutions called “toggles” on the
set leads to operations with interesting homomesy [Str15+];
Toggling the “arcs” in noncrossing partitions [EFGJMPR16];
Whirling functions between finite sets: injections, surjections,
parking functions, etc. [JPR17+]. ; and
Liftings of homomesy from combinatorial actions to piecewise
linear and birational maps [EiPr13, GrRo16, GrRo15b].
There are many others, including in upcoming examples.
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Cyclic Sieving
Phenomenon

(Reiner, Stanton, and
White, 2004)



Cyclic Sieving Phenomenon

Reiner, Stanton, and White isolated a related phenomenon which
they called cyclic sieving [RSW04] with similar ingredients:

a set S ,
a finite cyclic group G = ⟨τ⟩ acting on S

a polynomial p(q) ∈ N[q].

For g ∈ G , let Sg := {x ∈ S : gx = x} (set of elements fixed by g).
Let ωd denote a dth root of unity, and |g | the order of g ∈ G .

We say that the triple (S ,G , p) exhibits cyclic sieving if

#Sg = p(ω|g |).

In particular, #S = #Se = p(1). When #G = 2, this is
Stembridge’s q = −1 Phenomenon.



Recall: (S ,G , p) exhibits cyclic sieving if #Sg = p(ω|g |).

EG: Let S =
([n]
k

)
, G = Cn = ⟨τ = (12 . . . n)⟩, and

p(q) =

[
n

k

]
=

nq!

kq!(n− k)q!
, where jq := 1 + q + · · ·+ qj .

Theorem (RSW)

The triple
(([n]

k

)
,Cn,

[n
k

])
exhibits cyclic sieving.

EG: n = 4, k = 2, S = {12, 13, 14, 23, 24, 34}, C4 = {e, τ, τ2, τ3},
where τ2 = (13)(24). Then Sτ = ∅ = Sτ3

, Sτ2
= {13, 24}, and

p(q) =

[
4
2

]
= 1 + q + 2q2 + q3 + q4.

So p(ω4) = p(i) = 0, p(ω2) = p(−1) = 2, p(1) = 6.



Other Examples of Cyclic Sieving

There are many other interesting examples of cyclic sieving, including

For λ = m × n, S = SYT(λ), G = ⟨∂⟩, where ∂ = JDT
promotion, and p(q) = f λ(q) =

nq∏
(i ,j)∈λ hi,jq

. (B. Rhoades)

S = {triangulations of a regular n + 2-gon}, G = rotations
(|G | = n + 2), and p(q) = 1

(n+1)q

[2n
n

]
q
. (RSW).

Above generalizes to S = collection of clusters of a cluster
algebra of finite-type W under the action of a “deformed
Coxeter element” and f (q) = q-analogue of W -Catalan
number.
S = set of n × n ASMs, G = C4 gen by 90◦rotation, and

f (q) =
n−1∏
k=0

(3k + 1)q!
(n + k)q!

.



Bulgarian Solitaire



Homomesy: A more general definition

There are some cases where we find a similar phenomenon, but
where the map no longer has finite orbits. Here is a more general
definition of homomesy that is useful for some purposes.

Definition

Let τ be an self-map on a discrete set of objects S , and f be a
statistic on S . We say f is homomesic if the value of

lim
N→∞

1
N

N−1∑
i=0

f (τ i (x)) = c

is independent of the starting point x ∈ S . (Also, f is c-mesic.)

This clearly reduces to the earlier definition in the case where we
have an invertible action with finite orbits.



Example 2: Bulgarian solitaire

Given a way of dividing n identical chips into one or more heaps
(represented as a partition λ of n), define b(λ) as the partition of n
that results from removing a chip from each heap and putting all the
removed chips into a new heap.

First surfaced as a puzzle in Russia around 1980, and a solution
by Andrei Toom in Kvant; later popularized in 1983 Martin
Gardiner column; see survey of Brian Hopkins [Hop12].
Initial puzzle: starting from any of 176 partitions of 15, one
ends at (5, 4, 3, 2, 1).

Dynamical Algebraic Combinatorics and the Homomesy Phenomenon 7

and placing them together to form a new pile. We set (l ) to be the partition obtained in this way, whose parts are the
nonzero elements among `,l1�1,l2�1, . . . ,l`�1. Note that the newly created part of size ` can range in size from 1
to n, making it hard to write a concise formula for (l ) in terms of the parts of l .

Example 8. Bulgarian solitaire For n = 15, one trajectory of Bulgarian solitaire is:

115 15 14,1 13,2 12,2,1 11,3,1

10,3,29,3,2,18,4,2,17,4,3,17,4,3,16,4,3,25,4,3,2,1

This process first surfaced as a puzzle in Russia around 1980, and a solution by Andrei Toom was published in
Kvant [Too81]. A few years later it was popularized in one of Martin Gardner’s Mathematical Games columns [Gard83].
The puzzle was to show that no matter which of the 176 partitions of 15 one selects for the initial sizes of the piles,
one always eventually ends up at the “staircase” partition (5,4,3,2,1), which is a fixed point of the action (as in the
above example). It turns out that if n is a triangular number (so such a staircase partition exists), then any sequence
of moves eventually leads to this fixed point of the action; however, in general the action can exhibit more complex
dynamical behavior. (See Figure 2.) Some pointers to more recent literature and more information about the history of
this problem, including the fanciful, inaccurate (but easily googlable) name, are available in Brian Hopkins’s expository
survey [Hop12].

11111111 8 71

2111111

62

311111

521 431

32111 4211

332

3221

44511122211

221111 611 53 422

41111

3311

2222

Fig. 2: The action of Bulgarian solitaire on partitions of n = 8

Definition 2. Let S be a finite set with a (not necessarily invertible) map t : S !S (called a self-map). Applying
the map iteratively to any x 2S eventually yields a recurrent cycle, and the recurrent set is the union of these cycles.
(See Figure 2.) We call a statistic f : S !K homomesic if the average of f is the same over every recurrent cycle. It
is clear that if t is an invertible action on a finite set S, then this definition specializes to the original one.

Example 9. Number of parts under Bulgarian solitaire on partitions of nnn Consider the example of Bulgarian
solitaire for n = 8 as displayed in Figure 2. Let the statistic f (l ) := `(l ), the number of parts. We claim that this is



Bulgarian solitaire: “orbits” are now “trajectories”

E.g., for n = 8, two trajectories are

53→ 422→ 3311→ 422→ . . .

and

62→ 521→ 431→ 332→ 3221→ 4211→ 431→ . . .

(the new heaps are underlined).
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Bulgarian solitaire: homomesies
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Let φ(λ) be the number of parts of λ. In the forward orbit of λ = (5, 3),
the average value of φ is (4 + 3)/2 = 7/2; while for λ = (6, 2), the
average value of φ is (3 + 4 + 4 + 3)/4 = 14/4 = 7/2.

Proposition (“Bulgarian Solitaire has homomesic number of parts”)

If n = k(k − 1)/2 + j with 0 ≤ j < k , then for every partition λ of n, the
ergodic average of φ on the forward orbit of λ is k − 1 + j/k .

(n = 8 corresponds to k = 4, j = 2.) So the number-of-parts statistic on
partitions of n is homomesic wrt/b; similarly for “size of (kth) largest part”.



Ignoring transience

Since S is finite, every forward orbit is eventually periodic, and the
ergodic average of φ for the forward orbit that starts at x is just the
average of φ over the periodic orbit that x eventually goes into.

This definition also works in situations where S is infinite. But for
rest of this talk, we’ll restrict attention to maps τ that are invertible
on S , where S is finite, so our initial definition (below) makes sense.

Definition ([PrRo15])

Given an (invertible) action τ on a finite set of objects S , call a
statistic f : S → C homomesic with respect to (S , τ) if the
average of f over each τ -orbit O is the same constant c for all O,

i.e.,
1

#O
∑
s∈O

f (s) = c does not depend on the choice of O.

(Call f c-mesic for short.)
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Rowmotion: an invertible operation on antichains

Let A(P) be the set of antichains of a finite poset P .

Given A ∈ A(P), let ρA(A) be the set of minimal elements of the
complement of the downward-saturation of A.

ρA is invertible since it is a composition of three invertible operations:

antichains←→ downsets←→ upsets←→ antichains

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

This map and its inverse have been considered with varying degrees of
generality, by many people more or less independently (using a variety of
nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron
and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and
Williams, who named it rowmotion.



Example in lattice cell form

Viewing the elements of the poset as squares below, we would map:

Area = 8

X X
−→

Area = 10

X

X X



Panyushev’s conjecture (AST’s theorem)

Let ∆ be a (reduced irreducible) root system in Rn. (Pictures soon!)

Choose a system of positive roots and make it a poset of rank n by
decreeing that y covers x iff y − x is a simple root.

Theorem (Armstrong-Stump-Thomas [AST11], Conj. [Pan09])

Let O be an arbitrary ρA-orbit. Then

1
#O

∑
A∈O

#A =
n

2
.

In our language, the cardinality statistic is homomesic with respect to the
action of rowmotion on antichains in root posets.



Picture of root posets

Here are the classes of posets included in Panyushev’s conjecture.

(Graphic courtesy of Striker-Williams.)



Panyushev’s conjecture: The An case, n = 2

Here we have just an orbit of size 2 and an orbit of size 3:

0 2 1

1 1

1

Within each orbit, the average antichain has cardinality n/2 = 1.



Example of antichain rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

 # #

#

 # −→

# # #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

# #  

#

#  ↰

# # #

#

# # −→

# # #

#

# # −→

   

#

  −→

# # #

 

# # ↰

# # #

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

0 + 3 + 2 + 1
4

=
2 + 1

2
=

3
2
.



Antichains in [a]× [b]: cardinality is homomesic

A simpler-to-prove phenomenon of this kind concerns the poset [a]× [b]
(the type A minuscule poset), where [k] = {1, 2, . . . , k}:

Theorem (Propp, R.)

Let O be an arbitrary ρA-orbit in A([a]× [b]). Then

1
#O

∑
A∈O

#A =
ab

a+ b
.



Antichains in [a]× [b]: cardinality is homomesic

Theorem (Propp, R.)

Let O be an arbitrary ρA-orbit in A([a]× [b]). Then

1
#O

∑
A∈O

#A =
ab

a+ b
.

This proof uses an non-obvious equivariant bijection (the “Stanley-Thomas”
word [Sta09, §2]) between order ideals in [a]× [b] and binary strings,
which carries the ρJ action to cyclic rotation of bitstrings.



Antichains in [a]× [b]: cardinality is homomesic

Theorem (Propp, R.)

Let O be an arbitrary ρA-orbit in A([a]× [b]). Then

1
#O

∑
A∈O

#A =
ab

a+ b
.

7

6

5

4

3

2

1 8

9

10

11
12

-1+1-1-1-1 -1 -1 -1+1+1 +1 +1

Shows the Stanley-Thomas word for a 3-element antichain in A([7]× [5]).
Red and black correspond to +1 and −1 respectively.



Antichains in [a]× [b]: the case a = b = 2

Here we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average antichain has cardinality
ab/(a+ b) = 1.

0 1 2 1

1 1

1



Antichains in [a]× [b]: fiber-cardinality is homomesic

0 0 0 1 1 1 1 0

1 0 0 1

1

Within each orbit, the average antichain has

1/2 a green element and 1/2 a blue element.



Antichains in [a]× [b]: fiber-cardinality is homomesic

For (i , j) ∈ [a]× [b], and A an antichain in [a]× [b], let 1i ,j(A) be 1
or 0 according to whether or not A contains (i , j).

Also, let fi (A) =
∑

j∈[b] 1i ,j(A) ∈ {0, 1} (the cardinality of the
intersection of A with the fiber {(i , 1), (i , 2), . . . , (i , b)} in [a]× [b]),
so that #A =

∑
i fi (A).

Likewise let gj(A) =
∑

i∈[a] 1i ,j(A), so that #A =
∑

j gj(A).

Theorem (Propp, R.)

For all i , j ,

1
#O

∑
A∈O

fi (A) =
b

a+ b
and

1
#O

∑
A∈O

gj(A) =
a

a+ b
.

The indicator functions fi and gj are homomesic under ρA, even
though the indicator functions 1i ,j aren’t.



Antichains in [a]× [b]: centrally symmetric homomesies

Theorem (Propp, R.)

In any orbit, the number of A that contain (i , j) equals the number
of A that contain the opposite element
(i ′, j ′) = (a+ 1− i , b + 1− j).

That is, the function 1i ,j − 1i ′,j ′ is homomesic under ρA, with
average value 0 in each orbit.



Rowmotion on order ideals

We’ve already seen examples of Rowmotion on antichains ρA:

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

We can also define it as an operator ρJ on J(P), the set of order
ideals of a poset P , by shifting the waltz beat by 1:

# #

ρJ :  # # −→

  

  

#   −→

# #

# #

#   −→

# #

# #

#   

  



Rowmotion on [4]× [2] A



Rowmotion on [4]× [2] A

1

Area = 0

2

Area = 1

3

Area = 3

4

Area = 5

5

Area = 7

6

Area = 8

(0+1+3+5+7+8) / 6 = 4



Rowmotion on [4]× [2] B



Rowmotion on [4]× [2] B

1

Area = 2

2

Area = 4

3

Area = 6

4

Area = 6

5

Area = 4

6

Area = 2

(2+4+6+6+4+2) / 6 = 4



Rowmotion on [4]× [2] C



Rowmotion on [4]× [2] C

1

Area = 3

2

Area = 5

3

Area = 4

4

Area = 3

5

Area = 5

6

Area = 4

(3+5+4+3+5+4) / 6 = 4



Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 4 + 3 + 1 + 2 + 4 + 3

8
=

5
2
;

0 + 3 + 5 + 6
4

=
7
2
;

2 + 1
2

=
3
2
. Darn!



Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan)

Let P be the root poset of type An. If we assign an element x ∈ P

weight wt(x) = (−1)rank(x), and assign an order ideal I ∈ J(P)
weight f (I ) =

∑
x∈I wt(x), then f is homomesic under rowmotion

and promotion, with average n/2.



Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average rank-alternating cardinality for each orbit we find:
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

3
2
=

1 + 2 + 2 + 1
4

=
2 + 1

2
. Yay!



Ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average order ideal has cardinality ab/2 = 2.

0 1 3 4

2 2

1



Ideals in [a]× [b]: file-cardinality is homomesic

0 0 0 0 1 0 1 1 1 1 2 1

1 1 0 0 1 1

1

Within each orbit, the average order ideal has

1/2 a violet element, 1 red element, and 1/2 a brown element.



Ideals in [a]× [b]: file-cardinality is homomesic

For 1− b ≤ k ≤ a− 1, define the kth file of [a]× [b] as

{(i , j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, i − j = k}.

For 1− b ≤ k ≤ a− 1, let hk(I ) be the number of elements of I in
the kth file of [a]× [b], so that #I =

∑
k hk(I ).

Theorem (Propp, R.)

For every ρJ -orbit O in J([a]× [b]):

• 1
#O

∑
I∈O

hk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.

• 1
#O

∑
I∈O

#I =
ab

2
.



Coxeter Toggling

Independent Sets

of Path Graphs



Independent Sets of a Path Graph

Definition
An independent set of a graph is a subset of the vertices that does
not contain any adjacent pair.

Let In denote the set of independent sets of the n-vertex path graph
Pn. We usually refer to an independent set by its binary
representation.

Example
is written 1010100.

In this case, In refers to all binary strings with length n that do not
contain the subsequence 11.



Independent Sets of a Path Graph

Definition
An independent set of a graph is a subset of the vertices that does
not contain any adjacent pair.

Let In denote the set of independent sets of the n-vertex path graph
Pn. We usually refer to an independent set by its binary
representation.

Example
is written 1010100.

In this case, In refers to all binary strings with length n that do not
contain the subsequence 11.



Toggles

Definition (Striker - generalized earlier concept of Cameron
and Fon-der-Flaass)

For 1 ≤ i ≤ n, the map τi : In → In, the toggle at vertex i is
defined in the following way. Given S ∈ In:

if i ∈ S , τi removes i from S ,
if i ̸∈ S , τi adds i to S , if S ∪ {i} is still independent,
otherwise, τi (S) = S .

Formally,

τi (S) =


S \ {i} if i ∈ S
S ∪ {i} if i ̸∈ S and S ∪ {i} ∈ In
S if i ̸∈ S and S ∪ {i} ̸∈ In

.



Toggles

Proposition

Each toggle τi is an involution, i.e., τ2
i is the identity. Also, τi and τj

commute if and only if |i − j | ≠ 1.

Definition
The toggle group is the group generated by the n toggles.

Definition
Let φ := τn ◦ · · · ◦ τ2 ◦ τ1, which applies the toggles left to right.

Example

In I5, φ(10010) = 01001 by the following steps:

10010 τ17−→ 00010 τ27−→ 01010 τ37−→ 01010 τ47−→ 01000 τ57−→ 01001.



Homomesy

Here is an example φ-orbit in I7, containing 1010100. In this case,
φ10(S) = S .

1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1

Total: 4 2 3 2 3 2 4



Homomesy

Here is an example φ-orbit in I7, containing 1010100. In this case,
φ10(S) = S .

1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1
Total: 4 2 3 2 3 2 4



1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1
Total: 4 2 3 2 3 2 4

Theorem (Joseph-R.[JR18])

Define χi : In → {0, 1} to be the indicator function of vertex i .

For 1 ≤ i ≤ n, χi − χn+1−i is 0-mesic on φ-orbits of In.
Also 2χ1 + χ2 and χn−1 + 2χn are 1-mesic on φ-orbits of In.



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Idea of the proof that χi − χn+1−i is 0-mesic: Given a 1 in an “orbit board”, if
the 1 is not in the right column, then there is a 1 either

2 spaces to the right,
or 1 space diagonally down and right,

and never both.



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Idea of the proof that χi − χn+1−i is 0-mesic: This allows us to partition the
1’s in the orbit board into snakes that begin in the left column and end in the
right column.

This technique is similar to one used by Shahrzad Haddadan to prove homomesy
in orbits of an invertible map called “winching” on k-element subsets of
{1, 2, . . . , n}.



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Idea of the proof that χi − χn+1−i is 0-mesic: Each snake corresponds to a
composition of n − 1 into parts 1 and 2. Also, any snake determines the orbit!

1 refers to 1 space diagonally down and right
2 refers to 2 spaces to the right



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Red snake composition: 221121
Purple snake composition: 211212
Orange snake composition: 112122
Green snake composition: 121221
Blue snake composition: 212211

Brown snake composition: 122112



More Consequences of Snakes

Besides homomesy, this snake representation can be used to explain
a lot about the orbits (particularly the orbit sizes, i.e. the number of
independent sets in an orbit).

When n is even, all orbits have odd size.
“Most” orbits in In have size congruent to 3(n − 1) mod 4.
The number of orbits of In (OEIS A000358)
And much more...

Using Coxeter theory, it’s possible to extend our main theorem to
other “Coxeter elements” of toggles. We get the same homomesy if
we toggle exactly once at each vertex in any order.



Rowmotion via Toggling



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into
many small operations, each an involution.

Define tv (S) as:
S △ {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains
an order ideal, i.e. within J(P); otherwise, leave S fixed.”)
More formally, if P is a poset and v ∈ P , then the v-toggle is
the map tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are
in S already;
S \ {v}, if v is in S but none of the elements of P covering v is
in S ;
S otherwise.

Note that t2v = id.



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into
many small operations, each an involution.

Define tv (S) as:
S △ {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains
an order ideal, i.e. within J(P); otherwise, leave S fixed.”)

More formally, if P is a poset and v ∈ P , then the v-toggle is
the map tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are
in S already;
S \ {v}, if v is in S but none of the elements of P covering v is
in S ;
S otherwise.

Note that t2v = id.



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into
many small operations, each an involution.

Define tv (S) as:
S △ {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains
an order ideal, i.e. within J(P); otherwise, leave S fixed.”)
More formally, if P is a poset and v ∈ P , then the v-toggle is
the map tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are
in S already;
S \ {v}, if v is in S but none of the elements of P covering v is
in S ;
S otherwise.

Note that t2v = id.



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list
of all elements of P (each only once) such that i < j whenever
vi < vj .
Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

Start with this order ideal S :

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list
of all elements of P (each only once) such that i < j whenever
vi < vj .
Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

First apply t(1,1), which changes nothing:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list
of all elements of P (each only once) such that i < j whenever
vi < vj .
Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

Then apply t(1,0), which removes (1, 0) from the order ideal:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list
of all elements of P (each only once) such that i < j whenever
vi < vj .
Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

Then apply t(0,1), which adds (0, 1) to the order ideal:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list
of all elements of P (each only once) such that i < j whenever
vi < vj .
Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

Finally apply t(0,0), which changes nothing:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list
of all elements of P (each only once) such that i < j whenever
vi < vj .
Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow
motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

So this is S −→ r(S):

(1, 1)

(1, 0) (0, 1)

(0, 0)

−→ (1, 1)

(1, 0) (0, 1)

(0, 0)



Piecewise-linear and

birational liftings



Generalizing to the piecewise-linear setting

The decomposition of classical rowmotion into toggles allows us to
define a piecewise-linear (PL) version of rowmotion acting on
functions on a poset.

Let P be a poset, with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y)
whenever x ≤P y .

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
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Generalizing to the piecewise-linear setting

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Note that the interval [minz ·>x f (z),maxw<· x f (w)] is precisely the
set of values that f ′(x) could have so as to satisfy the
order-preserving condition.

if f ′(y) = f (y) for all y ̸= x , the map that sends

f (x) to min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

is just the affine involution that swaps the endpoints.



Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z ·>x

f (z) + max
w<· x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9



Composing flips

Just as we can apply toggle-maps from top to bottom, we can apply
flip-maps from top to bottom, to get piecewise-linear rowmotion:

.8 .6 .6

.4 .3
σN

→ .4 .3
σW

→ .3 .3

.1 .1 .1

.6 .6
σE

→ .3 .4
σS

→ .3 .4

.1 .2

(We successively flip at N = (1, 1), W = (1, 0), E = (0, 1), and
S = (0, 0) in order.)



How PL rowmotion generalizes classical rowmotion

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Start with this order ideal S :

(1, 1)

(1, 0) (0, 1)

(0, 0)



How PL rowmotion generalizes classical rowmotion

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Translated to the PL setting:

1

0 1

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

First apply t(1,1), which changes nothing:

1

0 1

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Then apply t(1,0), which removes (1, 0) from the order ideal:

1

1 1

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Then apply t(0,1), which adds (0, 1) to the order ideal:

1

1 0

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

Finally apply t(0,0), which changes nothing:

1

1 0

0



How PL rowmotion generalizes classical rowmotion

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Example:

So this is S −→ r(S):

(1, 1)

(1, 0) (0, 1)

(0, 0)

−→ (1, 1)

(1, 0) (0, 1)

(0, 0)



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary
ring operations (+, ·) with the tropical operations (max,+). In the
piecewise-linear (PL) category of the order polytope studied above,
our flipping-map at x replaced the value of a function f : P → [0, 1]
at a point x ∈ P with f ′, where

f ′(x) := min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

We can“detropicalize” this flip map and apply it to an assignment
f : P → R(x) of rational functions to the nodes of the poset, using
that

min(zi ) = −max(−zi ), to get the birational toggle map

(Tx f )(x) = f ′(x) =

∑
w<· x f (w)

f (x)
∑

z ·>x
1

f (z)



Birational rowmotion: definition

Let P be a finite poset. We define P̂ to be the poset obtained
by adjoining two new elements 0̂ and 1̂ to P and forcing

0̂ to be less than every other element, and
1̂ to be greater than every other element.

Let K be a field.
A K-labelling of P will mean a function P̂ → K.
The values of such a function will be called the labels of the
labelling.
We will represent labellings by drawing the labels on the
vertices of the Hasse diagram of P̂ .
For any v ∈ P , define the birational v-toggle as the rational
map

Tv : KP̂ 99K KP̂ defined by (Tv f ) (w) =
∑

P̂∋u<· v f (u)

f (v)
∑

P̂∋u ·>v
1

f (u)

for
w = v .
(We leave (Tv f ) (w) = f (w) when w ̸= v .)



Birational rowmotion: definition

For any v ∈ P , define the birational v-toggle as the rational
map

Tv : KP̂ 99K KP̂ defined by (Tv f ) (w) =
∑

u<· v f (u)

f (v)
∑

u ·>v
1

f (u)

for
w = v .
Notice that this is a local change only to the label at v .
We have T 2

v = id (on the range of Tv ), and Tv is a birational
map.

We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P .
This is indeed independent of the linear extension, because

Tv and Tw commute whenever v and w are incomparable (even
whenever they are not adjacent in the Hasse diagram of P);
we can get from any linear extension to any other by switching
incomparable adjacent elements.

This is originally due to Einstein and Propp [EiPr13, EiPr14].
Another exposition of these ideas can be found in [Rob16].



Birational rowmotion: definition

For any v ∈ P , define the birational v-toggle as the rational
map

Tv : KP̂ 99K KP̂ defined by (Tv f ) (w) =
∑

u<· v f (u)

f (v)
∑

u ·>v
1

f (u)

for
w = v .
Notice that this is a local change only to the label at v .
We have T 2

v = id (on the range of Tv ), and Tv is a birational
map.
We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P .
This is indeed independent of the linear extension, because

Tv and Tw commute whenever v and w are incomparable (even
whenever they are not adjacent in the Hasse diagram of P);
we can get from any linear extension to any other by switching
incomparable adjacent elements.

This is originally due to Einstein and Propp [EiPr13, EiPr14].
Another exposition of these ideas can be found in [Rob16].



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension
((1, 1), (1, 0), (0, 1), (0, 0)).

That is, toggle in the order “top, left, right, bottom”.
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Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension
((1, 1), (1, 0), (0, 1), (0, 0)).

That is, toggle in the order “top, left, right, bottom”.



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)f

1

z

x y

w

1

1

(x+y)
z

x y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,1)T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz

w(x+y)
yz

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,0)T(0,1)T(1,0)T(1,1)f = ρB f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz

w(x+y)
yz

1
z

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion orbit on a product of chains

Example: Iterating this procedure we get

(x+y)
z

ρB f = (x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

ρ2
B f = 1

y
1
x

z
x+y ,

1
w

ρ3
B f = yz

(x+y)w
xz

(x+y)w

xy
(x+y)w ,

z

ρ4
B f = x y

w .

Notice that ρ4
B f = f , which generalizes to ρr+s+2

B f = f for
P = [0, r ]× [0, s] [Grinberg-R 2015]. Notice also “antipodal
reciprocity”.
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Why study this generalization?

Motivations and Connections

Classical rowmotion is closely related to the Auslander-Reiten
translation in quivers arising in certain special posets (e.g.,
rectangles) [Yil17].
This generalization implies the results at the PL and
combinatorial level (but not vice-versa).
Birational rowmotion can be related to Y -systems of type
Am × An described in Zamolodchikov periodicity [Rob16, §4.4].
The orbits of these actions all have natural homomesic
statistics [PrRo15, EiPr13, EiPr14].
Periodicity of these systems is generally nontrivial to prove.



Birational homomesy on files of J([0, r ]× [0, s]

The poset [0, 1]× [0, 1] has three files, {(1, 0)}, {(0, 0), (1, 1)}, and
{(0, 1)}.

Multiplying over all iterates of birational rowmotion in a given file,
we get

ρB(f )(1, 0)ρ2
B(f )(1, 0)ρ

3
B(f )(1, 0)ρ

4
B(f )(1, 0) =

(x + y)w

xz

1
y

yz

(x + y)w
(x) = 1,

ρB(f )(0, 0)ρB(f )(1, 1)ρ2
B(f )(0, 0)ρ

2
B(f )(1, 1)ρ

3
B(f )(0, 0)ρ

3
B(f )(1, 1)ρ

4
B(f )(0, 0)ρ

4
B(f )(1, 1) =

1
z

x + y

z

z

x + y

(x + y)w

xy

xy

(x + y)w

1
w

(x) (z) = 1,

ρB(f )(0, 1)ρ2
B(f )(0, 1)ρ

3
B(f )(0, 1)ρ

4
B(f )(0, 1) =

(x + y)w

yz

1
x

xz

(x + y)w
(y) = 1.

Each of these products equalling one is the manifestation, for the
poset of a product of two chains, of homomesy along files at the
birational level.
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Birational homomesy on files of J([0, r ]× [0, s]

Theorem ([GrRo15b, Thm. 30, 32])

(1) The birational rowmotion map ρB on the product of two chains
P = [0, r ]× [0, s] is periodic, with period r + s + 2.

(2) The birational rowmotion map ρB on the product of two chains
P = [0, r ]× [0, s] satisfies the following reciprocity:
ρi+j+1
B = 1/ρ0

B(r − i , s − j) = 1
xr−i,s−j

.

Theorem (Musiker-R [MR19])

Given a file F in [0, r ]× [0, s],
r+s+1∏
k=0

∏
(i ,j)∈F

ρkB(i , j) = 1.

The proof of this involves constructing a complicated formula for the
ρkB in terms of families of non-intersecting lattice paths, from which
one can also deduce periodicity and the other geometric homomesies
of this action, first proved by Grinberg-R [GrRo15b, Thm. 32].
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ρkB in terms of families of non-intersecting lattice paths, from which
one can also deduce periodicity and the other geometric homomesies
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The final slide of this talk (before the references)

• Studying dynamics on objects in algebraic combinatorics is
interesting, particularly with regard to our
THEMES: 1) Periodicity/order ; 2) Orbit structure; 3) Homomesy
4) Equivariant bijections

• Combinatorial objects are often discrete “shadows” of
continuous PL objects, which in turn reflect algebraic dynamics. But
combinatorial tools are still useful, even at this level.

• Some of these examples will be discussed more fully in the
upcoming lectures.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

Thanks very much for coming to this talk!

どうも有り難う御座いました。

http://www.math.uconn.edu/~troby/research.html
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