SHOW ALL YOUR WORK! Make sure you give reasons to support your answers. If you have any questions, do not hesitate to ask! For this exam no calculators are to be used, but you may use one page of ordinary 8.5 × 11-inch (or A4) paper with any handwritten notes or formulæ you like.

1. REVIEW COURSE MATERIALS:

 (a) Check all of your worksheets against the worksheet solutions;
 (b) Check all of the homework solutions;
 (c) Review Ximera quizzes;
 (d) Review video lectures, especially anything you found confusing.
 (e) Ask questions in Piazza!

2. Compute all solutions to the following linear system by reducing its associated augmented matrix to Reduced Row-Echelon Form.

\[
\begin{align*}
 x_1 + x_3 & = 2 \\
 x_1 + 2x_2 + 5x_3 + 2x_4 & = 0 \\
 2x_1 + x_2 + 4x_3 & = 2 \\
 x_1 + x_2 + 3x_3 + x_4 & = 1
\end{align*}
\]

3. Let \(v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} \). Write each of the following vectors as a linear combination of \(v_1 \) and \(v_2 \), or show that this cannot be done.

(a) \(\begin{bmatrix} -2 \\ 14 \\ 9 \end{bmatrix} \)
(b) \(\begin{bmatrix} 10 \\ 4 \\ 1 \end{bmatrix} \)

4. Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) be the transformation defined by \(T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + y \\ x - 3y \\ x + xy \end{bmatrix} \). Is \(T \) a linear transformation or not? Give a complete and careful explanation.

5. Perform the indicated matrix operations, where \(A = \begin{bmatrix} -1 & 2 \\ 1 & 3 \end{bmatrix} \), \(B = \begin{bmatrix} -1 & 0 & 4 \\ 2 & 1 & 0 \end{bmatrix} \), \(C = [2 \quad 4 \quad -1] \), and \(D = [-2 \quad -3] \). If any operation is not possible, explain why.

a) \(A^2 \)
 b) \(B^T A \)
 c) \(DAB \)
 d) \(BC \)
 e) \(D^3 \)
6. Let R be the linear transformation on two-dimensional real vectors that multiplies the vector components by 2. Let S be the linear transformation which projects vectors onto the first coordinate (i.e., the x-axis). Let T be the linear transformation which rotates a vector by $\pi/2$ radians.

a) Write a matrix for the composite linear transformation which performs R, then S, then T (in that order)

b) Use your answer to the previous part to compute the image of the vector $u = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$ under this composite transformation.

c) Is the composite transformation injective (one-to-one)? You may give your answer in clear English if you feel that no calculation is necessary.

7. For each statement below indicate whether it is true or false, and give reasons to support your answer. To show something is false, usually it is best to give a specific simple counterexample. Extra credit for “salvaging” false statements to make them correct.

(a) A homogeneous system of equations can be inconsistent.

(b) The columns of the standard matrix for a linear transformation T from \mathbb{R}^n to \mathbb{R}^m are the images of the columns of the $n \times n$ identity matrix under T.

(c) If A and B are matrices such that both products AB and BA are defined, then A and B must be square matrices of the same size.

(d) If A, B, and C are matrices such that $AB = AC$, then $B = C$.

(e) If T is a linear transformation, then $T(0) = 0$.

(f) If two vectors in \mathbb{R}^n are linearly dependent, then they both lie on the same line through the origin.

8. Compute the inverse of each of the following matrices (if they exist). Show your work. (If you use a special formula, state the formula before applying it.) If an inverse does not exist, explain clearly why.

 a) $\begin{bmatrix} 1 & 6 \\ -1 & 2 \end{bmatrix}$
 b) $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 4 & 1 \\ 1 & 2 & 1 \end{bmatrix}$
 c) $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

9. Show that if a product of two $n \times n$ matrices AB is invertible, then so is A.
10. Here are some specific tasks you should be able to accomplish with demonstrated understanding:

(a) Know the definitions and geometric interpretations of the following basic terms:
 - linear (in)dependence and span of sets of vectors;
 - trivial versus nontrivial solutions;
 - homogeneous versus inhomogeneous linear systems;
 - domain, range, and image of linear transformations and what it means for a transformation to be one-to-one or onto;
 - the transpose and inverse of a matrix; elementary matrices;

(b) Row reduce matrices to echelon and/or reduced echelon form. Use this process and an understanding of pivot positions to:
 - solve linear equations;
 - determine whether a given (column) vector is in the span of a given set of vectors;
 - determine whether a given set of vectors is linearly independent or dependent;
 - (given a vector \(b \) in the range of a linear transformation \(T \)) find \(u \) in the domain such that \(T(u) = b \);
 - determine whether a matrix transformation is one-to-one and/or onto; and
 - compute the inverse of a matrix.

(c) Fluently convert between all of the following: systems of linear equations, vector equations, matrix-vector equations, and augmented matrices.

(d) Give solutions to linear systems in vector form, including parametric vector form if applicable.

(e) Perform basic vector and matrix addition and scalar multiplication and know the underlying algebraic properties.

(f) Interpret the product of a matrix \(A \) by a vector \(x \) as the linear combination of the columns:
 \[x_1 a_1 \cdots x_n a_n. \]

(g) Multiply two matrices \(A \) and \(B \) in two different ways: (1) column-by-column matrix-vector multiplication, and (2) row-column rule.

(h) Describe how \(2 \times 2 \) matrices transform vectors in \(\mathbb{R}^2 \), including stretches, shrinks, shears, and rotations. Compute inverses of such matrices using the simple formula.

(i) Understand the theory of the course well enough to distinguish true statements from false ones, giving supporting evidence or counterexamples as appropriate.

(j) Use various forms of the Invertible Matrix Theorem in context.