Rowmotion in products of two chains

Tom Roby (UConn)
AMS Special Session on The Many Lives of Lattice Theory
Joint Mathematics Meetings 2022
Online

7 April 2022

Slides for this talk are available online (or will be soon) on my research webpage:

Google “Tom Roby”
Abstract: The rowmotion operator on the order ideals (or antichains) of a finite poset is of long-standing interest, and there has recently been a flurry of research activity around understanding its dynamical and other properties. Questions of periodicity, orbit sizes, and homomesy (finding statistics that have the same average over all orbits) abound. There are also connections with representation theory that are still only partially understood. This talk will give an introductory overview of these ideas for the special (nontrivial) case where the poset is a product of two chains.
This talks discusses joint work, mostly with (chronologically) Jim Propp, Mike Joseph, and Matthew Plante.

I’m grateful to Matthew, Mike, and Darij Grinberg for sharing source code for slides from their earlier talks, which I shamelessly cannibalized.

Thanks also to Drew Armstrong, Arkady Berenstein, Anders Björner, Barry Cipra, Karen Edwards, Robert Edwards, David Einstein, Darij Grinberg, Shahrzad Haddadan, Sam Hopkins, Mike La Croix, Svante Linusson, Gregg Musiker, Nathan Williams, Vic Reiner, Bruce Sagan, Richard Stanley, Jessica Striker, Ralf Schiffler, Hugh Thomas, and Ben Young.

Please feel free to put questions and comments in the chat, and the moderator will convey them with appropriate timing and finesse. Or someone else may answer them!
Cyclic rotation of binary strings

“Immer mit den einfachsten Beispielen anfangen.” — David Hilbert
Let $S_{n,k}$ be the set of length n binary strings with k 1s.

Let $C_R : S_{n,k} \rightarrow S_{n,k}$ be rightward cyclic rotation.

Example

Cyclic rotation for $n = 6$, $k = 2$:

\[
101000 \quad \xrightarrow{C_R} \quad 010100
\]
Let $S_{n,k}$ be the set of length n binary strings with k 1s.
Let $C_R : S_{n,k} \rightarrow S_{n,k}$ be rightward cyclic rotation.

Example
Cyclic rotation for $n = 6$, $k = 2$:

$$101000 \quad \leftrightarrow \quad 010100$$

C_R
An inversion of a binary string is a pair of positions \((i, j)\) with \(i < j\) such that there is a 1 in position \(i\) and a 0 in position \(j\).

Example

Orbits of cyclic rotation for \(n = 6, k = 2\):

<table>
<thead>
<tr>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>7</td>
<td>110000</td>
<td>8</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>010100</td>
<td>5</td>
<td>011000</td>
<td>6</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>001010</td>
<td>3</td>
<td>001100</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>000101</td>
<td>1</td>
<td>000110</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100010</td>
<td>5</td>
<td>000011</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010001</td>
<td>3</td>
<td>100001</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cyclic rotation of binary strings

An inversion of a binary string is a pair of positions \((i, j)\) with \(i < j\) such that there is a 1 in position \(i\) and a 0 in position \(j\).

Example

Orbits of cyclic rotation for \(n = 6,\ k = 2\):

<table>
<thead>
<tr>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>7</td>
<td>110000</td>
<td>8</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>010100</td>
<td>5</td>
<td>011000</td>
<td>6</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>001010</td>
<td>3</td>
<td>001100</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>000101</td>
<td>1</td>
<td>000110</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100010</td>
<td>5</td>
<td>000011</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010001</td>
<td>3</td>
<td>100001</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
</tr>
</tbody>
</table>
Given

- a set S,
- an invertible map $\tau : S \to S$ such that every τ-orbit is finite,
- a function ("statistic") $f : S \to \mathbb{K}$ where \mathbb{K} is a field of characteristic 0.

We say that the triple (S, τ, f) exhibits **homomesy** if there exists a constant $c \in \mathbb{K}$ such that for every τ-orbit $\emptyset \subseteq S$,

$$\frac{1}{\# \emptyset} \sum_{x \in \emptyset} f(x) = c.$$
Definition of Homomesy

Given

- a set S,
- an invertible map $\tau : S \to S$ such that every τ-orbit is finite,
- a function (“statistic”) $f : S \to \mathbb{K}$ where \mathbb{K} is a field of characteristic 0.

We say that the triple (S, τ, f) exhibits **homomesy** if there exists a constant $c \in \mathbb{K}$ such that for every τ-orbit $\emptyset \subseteq S$,

$$\frac{1}{\#\emptyset} \sum_{x \in \emptyset} f(x) = c.$$

In this case, we say that the function f is **homomesic** with average c (also called **c-mesic**) under the action of τ on S.
Let $\text{inv}(s)$ denote the number of inversions of $s \in S_{n,k}$.

Then the function $\text{inv} : S_{n,k} \rightarrow \mathbb{Q}$ is homomesic with average $\frac{k(n-k)}{2}$ with respect to cyclic rotation on $S_{n,k}$.
Theorem (Propp & R. [PrRo15, §2.3])

Let \(\text{inv}(s) \) denote the number of inversions of \(s \in S_{n,k} \).

Then the function \(\text{inv} : S_{n,k} \to \mathbb{Q} \) is homomesic with average \(\frac{k(n-k)}{2} \) with respect to cyclic rotation on \(S_{n,k} \).

Proof.

Consider superorbits of length \(n \). Show that replacing “01” with “10” in a string \(s \) leaves the total number of inversions in the superorbit generated by \(s \) unchanged (and thus the average since our superorbits all have the same length).
Cyclic rotation of binary strings

Example

For $n = 6$, $k = 2$:

<table>
<thead>
<tr>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>7</td>
<td>110000</td>
<td>8</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>010100</td>
<td>5</td>
<td>011000</td>
<td>6</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>001010</td>
<td>3</td>
<td>001100</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>000101</td>
<td>1</td>
<td>000110</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100010</td>
<td>5</td>
<td>000011</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010001</td>
<td>3</td>
<td>100001</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
</tr>
</tbody>
</table>
Cyclic rotation of binary strings

Example

\(n = 6, \ k = 2 \)

<table>
<thead>
<tr>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
<th>String</th>
<th>Inv</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>7</td>
<td>110000</td>
<td>8</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>010100</td>
<td>5</td>
<td>011000</td>
<td>6</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>001010</td>
<td>3</td>
<td>001100</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>000101</td>
<td>1</td>
<td>000110</td>
<td>2</td>
<td>100100</td>
<td>6</td>
</tr>
<tr>
<td>100010</td>
<td>5</td>
<td>000011</td>
<td>0</td>
<td>010010</td>
<td>4</td>
</tr>
<tr>
<td>010001</td>
<td>3</td>
<td>100001</td>
<td>4</td>
<td>001001</td>
<td>2</td>
</tr>
<tr>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
<td>Average</td>
<td>4</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>String</th>
<th>String</th>
<th>Inversions Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>101000</td>
<td>011000</td>
<td>-1</td>
</tr>
<tr>
<td>010100</td>
<td>001100</td>
<td>-1</td>
</tr>
<tr>
<td>001010</td>
<td>000110</td>
<td>-1</td>
</tr>
<tr>
<td>000101</td>
<td>000011</td>
<td>-1</td>
</tr>
<tr>
<td>100010</td>
<td>100001</td>
<td>-1</td>
</tr>
<tr>
<td>010001</td>
<td>110000</td>
<td>+5</td>
</tr>
</tbody>
</table>

There are other homomesic statistics as well:
Let $\chi_j(s) := s_j$, the jth bit of the string s. Can you see why this is homomesic?
This example illustrates some of the main themes *dynamical algebraic combinatorics*. Our setup is a set S of combinatorial objects with an invertible map (or group action more generally).

1. Periodicity/order: C_R on $S_{n,k}$ has order $n = 6$.

2. Orbit structure: Every orbit size must divide n.

3. Homomesy: The number of inversions is $\frac{k(n - k)}{2}$-mesic.

4. Equivariant bijections: No need here.

5. *Lifting from combinatorial to piecewise-linear and birational settings.*
Rowmotion on Antichains of a Poset
Rowmotion: an invertible operation on antichains

Let $\mathcal{A}(P)$ be the set of antichains (subsets of P no two elements are comparable) of a finite poset P.

Given $A \in \mathcal{A}(P)$, let $\rho_A(A)$ be the set of minimal elements of the complement of the downward-saturation of A (the smallest downset containing A).

ρ_A is invertible since it is a composition of three invertible ops:

antichains \leftrightarrow downsets \leftrightarrow upsets \leftrightarrow antichains

\[
\rho_A : \quad \begin{array}{c}
\circ \\
\circ \\
\circ \\
\bullet \\
\circ \\
\circ \\
\bullet
\end{array}
\quad \rightarrow
\begin{array}{c}
\circ \\
\circ \\
\circ \\
\bullet \\
\bullet \\
\bullet \\
\bullet
\end{array}
\quad \rightarrow
\begin{array}{c}
\circ \\
\circ \\
\bullet \\
\bullet \\
\circ \\
\circ \\
\bullet
\end{array}
\quad \rightarrow
\begin{array}{c}
\circ \\
\circ \\
\circ \\
\circ \\
\bullet \\
\bullet \\
\bullet
\end{array}
\]

This map and its inverse have been considered with varying degrees of generality, by many people more or less independently (using a variety of nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and Williams, who named it rowmotion.
Let $\mathcal{A}(P)$ be the set of antichains (subsets of P no two elements are comparable) of a finite poset P.

Given $A \in \mathcal{A}(P)$, let $\rho_A(A)$ be the set of minimal elements of the complement of the downward-saturation of A (the smallest downset containing A).

ρ_A is invertible since it is a composition of three invertible ops:

antichains \longleftrightarrow downsets \longleftrightarrow upsets \longleftrightarrow antichains

This map and its inverse have been considered with varying degrees of generality, by many people more or less independently (using a variety of nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and Williams, who named it rowmotion.
Let Δ be a (reduced irreducible) root system in \mathbb{R}^n. (Pictures soon!)

Choose a system of positive roots and make it a poset of rank n by decreeing that y covers x iff $y - x$ is a simple root.

Theorem (Armstrong–Stump–Thomas [AST11], Conj. [Pan09])

Let O be any ρ_A-orbit. Then

$$
\frac{1}{\#O} \sum_{A \in O} \#A = \frac{n}{2}.
$$

In our language, the cardinality statistic is homomesic with respect to the action of rowmotion on antichains in root posets.
Here are the classes of posets included in Panyushev’s conjecture.

Figure: The positive root posets A_3, B_3, C_3, and D_4.

(Graphic courtesy of Striker-Williams.)
Example of antichain rowmotion on A_3 root poset

For the type A_3 root poset, there are 3 ρ_A-orbits, of sizes 8, 4, 2:

Checking the average cardinality for each orbit we find that

\[
\frac{1 + 2 + 2 + 1 + 1 + 2 + 2 + 1}{8} = \frac{0 + 3 + 2 + 1}{4} = \frac{2 + 1}{2} = \frac{3}{2}.
\]
Orbits of rowmotion on antichains of $[2] \times [3]$

Average cardinality: $6/5$

Average cardinality: $6/5$

For antichain rowmotion on this poset, periodicity has been known for a long time:

Theorem (Brouwer–Schrijver 1974)

On $[a] \times [b]$, rowmotion is periodic with period $a + b$.

Theorem (Fon-Der-Flaass 1993)

On $[a] \times [b]$, every rowmotion orbit has length $(a + b)/d$, some d dividing both a and b.
Antichains in $[a] \times [b]$: cardinality is homomesic

For rectangular posets $[a] \times [b]$ (the type A minuscule poset, where $[k] = \{1, 2, \ldots, k\}$), the homomesy is easier to show than for root posets.

Theorem (Propp, R.)

Let \mathcal{O} be any ρ_A-orbit in $\mathcal{A}([a] \times [b])$. Then

$$\frac{1}{\# \mathcal{O}} \sum_{A \in \mathcal{O}} \# A = \frac{ab}{a + b}.$$
Antichains in $[a] \times [b]$: cardinality is homomesic

Theorem (Propp, R.)

Let O be any ρ_A-orbit in $\mathcal{A}([a] \times [b])$. Then

$$\frac{1}{\#O} \sum_{A \in O} \#A = \frac{ab}{a + b}.$$

This proof uses an non-obvious equivariant bijection (the “Stanley–Thomas” word [Sta09, §2]) between antichains in $[a] \times [b]$ and binary strings, which carries the ρ_A map to cyclic rotation of bitstrings.

The figure shows the Stanley–Thomas word for a 3-element antichain in $\mathcal{A}([7] \times [5])$. Red $\leftrightarrow +1$, while Black $\leftrightarrow -1$.

(Graphic courtesy of Ben Young.)
Antichains in \([a] \times [b]:\) cardinality is homomesic

Theorem (Propp, R.)

Let \(O\) be any \(\rho_A\)-orbit in \(A([a] \times [b])\). Then

\[
\frac{1}{\#O} \sum_{A \in O} \#A = \frac{ab}{a + b}.
\]

This proof uses a non-obvious equivariant bijection (the “Stanley–Thomas” word [Sta09, §2]) between antichains in \([a] \times [b]\) and binary strings, which carries the \(\rho_A\) map to cyclic rotation of bitstrings.

The figure shows the Stanley–Thomas word for a 3-element antichain in \(A([7] \times [5])\). Red \(\leftrightarrow +1\), while Black \(\leftrightarrow -1\).

This bijection also allowed Propp–R. to derive refined homomesy results for fibers and antipodal points in \([a] \times [b]\).
Look at the cardinalities across a **positive fiber** such as the one highlighted in red.

Average: $\frac{3}{5}$
Orbits of rowmotion on antichains of $[2] \times [3]$

How about across a negative fiber such as the one highlighted in red.

![Graph showing rowmotion on antichains](attachment:graph.png)

Average: $2/5$
For \((i, j) \in [a] \times [b]\), and \(A\) an antichain in \([a] \times [b]\), let \(\chi_{i,j}(A)\) be 1 or 0 according to whether or not \(A\) contains \((i, j)\).

Also, let \(f_i(A) = \sum_{j \in [b]} \chi_{i,j}(A) \in \{0, 1\}\) (the cardinality of the intersection of \(A\) with the fiber \(\{(i, 1), (i, 2), \ldots, (i, b)\}\) in \([a] \times [b]\)), so that \(#A = \sum_i f_i(A)\).

Likewise let \(g_j(A) = \sum_{i \in [a]} \chi_{i,j}(A)\), so that \(#A = \sum_j g_j(A)\).

\[\text{Theorem (Propp, R.)} \]

For all \(i, j\),

\[
\frac{1}{\#O} \sum_{A \in O} f_i(A) = \frac{b}{a+b} \quad \text{and} \quad \frac{1}{\#O} \sum_{A \in O} g_j(A) = \frac{a}{a+b}.
\]

The indicator functions \(f_i\) and \(g_j\) are homomesic under \(\rho_A\), even though the indicator functions \(\chi_{i,j}\) aren't.
Rowmotion on order ideals

We’ve already seen examples of Rowmotion on antichains ρ_A:

$$
\rho_A : \quad \circ \quad \circ \quad \circ \quad \rightarrow \quad \circ \quad \circ \quad \circ \quad \rightarrow \quad \bullet \quad \bullet \quad \bullet \quad \rightarrow \quad \circ \quad \circ \quad \circ \quad\circ \quad \circ
$$

We can also define it as an operator ρ on $\mathcal{J}(P)$, the set of order ideals of a poset P, by shifting the waltz beat by 1:

$$
\rho_J : \quad \circ \quad \circ \quad \circ \quad \rightarrow \quad \circ \quad \circ \quad \circ \quad \rightarrow \quad \circ \quad \circ \quad \circ \quad \rightarrow \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ \quad \circ
$$

Or as an operator on the up-sets (order filters) $\mathcal{U}(P)$ of P:

$$
\rho_U : \quad \circ \quad \circ \quad \circ \quad \rightarrow \quad \circ \quad \circ \quad \circ \quad \rightarrow \quad \circ \quad \circ
$$
Rowmotion on Order
Ideals of a Poset
We define the (cyclic) group action of \textit{rowmotion} on the set of order ideals \(\mathcal{J}(P) \) via the map \(\text{Row} : \mathcal{J}(P) \to \mathcal{J}(P) \) given by the following three-step process.

Start with an order ideal, and

\begin{enumerate}
\item \(\Theta \): Take the complement (giving an order filter)
\item \(\nabla \): Take the minimal elements (giving an antichain)
\item \(\Delta^{-1} \): Saturate downward (giving an order ideal)
\end{enumerate}

\[\rho_J : \]

\[\begin{array}{c}
\begin{array}{c}
\bullet \\
\circ \\
\bullet
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\bullet \\
\circ \\
\bullet
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\bullet \\
\circ \\
\bullet
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\bullet \\
\circ \\
\bullet
\end{array}
\end{array} \]

This map and its inverse have been considered with varying degrees of generality, by many people more or less independently (using a variety of nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and Williams, who named it \textit{rowmotion}.
Rowmotion: an invertible operation on order ideals

We define the (cyclic) group action of rowmotion on the set of order ideals $\mathcal{J}(P)$ via the map $\text{Row} : \mathcal{J}(P) \to \mathcal{J}(P)$ given by the following three-step process.

Start with an order ideal, and

1. Θ: Take the complement (giving an order filter)
2. ∇: Take the minimal elements (giving an antichain)
3. Δ^{-1}: Saturate downward (giving an order ideal)

This map and its inverse have been considered with varying degrees of generality, by many people more or less independently (using a variety of nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and Williams, who named it rowmotion.
Dynamical properties of rowmotion: cardinality is homomesic

<table>
<thead>
<tr>
<th>Theorem (Brouwer–Schrijver 1974)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On ([a] \times [b]), rowmotion is periodic with period (a + b).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Fon-Der-Flaass 1993)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On ([a] \times [b]), every rowmotion orbit has length ((a + b)/d), some (d) dividing both (a) and (b).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Propp, R.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (O) be any rowmotion orbit in (\mathcal{J}([a] \times [b])). Then</td>
</tr>
</tbody>
</table>
| \[
| \frac{1}{\#O} \sum_{l \in O} \#l = \frac{ab}{2}. |
| \] |
We have an orbit of size 2 and an orbit of size 4:

\[
\begin{array}{cc}
\begin{array}{cc}
\text{2} & \text{2} \\
\text{0} & \text{1} \\
\text{3} & \text{4}
\end{array}
\end{array}
\]

Within each orbit, the average order ideal has cardinality \(ab/2 = 2 \).
Example in lattice cell form

Viewing the elements of the poset as squares below, we would map:

Area = 8

Area = 10

$\frac{(0+1+3+5+7+8)}{6} = 4$

\[
(2 + 4 + 6 + 6 + 4 + 2) / 6 = 4
\]

$$\frac{3 + 5 + 4 + 3 + 5 + 4}{6} = 4$$
Cameron and Fond-Der-Flaass showed how to write rowmotion on order ideals (equivalently order filters) as a product of simple involutions called toggles.

Definition (Cameron and Fon-Der-Flaass 1995)

Let $\mathcal{J}(P)$ be the set of order ideals of a finite poset P. Let $e \in P$. Then the **toggle** corresponding to e is the map $T_e : \mathcal{J}(P) \to \mathcal{J}(P)$ defined by

$$T_e(U) = \begin{cases}
U \cup \{e\} & \text{if } e \notin U \text{ and } U \cup \{e\} \in \mathcal{J}(P), \\
U \setminus \{e\} & \text{if } e \in U \text{ and } U \setminus \{e\} \in \mathcal{J}(P), \\
U & \text{otherwise.}
\end{cases}$$

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom along a linear extension of P gives rowmotion on order ideals of P.
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.

Example
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.

Example
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.

Example
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.

Example
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.

Example
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.

Example
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.

Example
Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles T_e from top to bottom on P gives rowmotion on order ideals of P.

Example
Example of order ideal rowmotion on A_3 root poset

For the type A_3 root poset, there are 3 ρ-orbits, of sizes 8, 4, 2:

Checking the average cardinality for each orbit we find that

$$\frac{1 + 2 + 4 + 3 + 1 + 2 + 4 + 3}{8} = \frac{5}{2}; \quad \frac{0 + 3 + 5 + 6}{4} = \frac{7}{2}; \quad \frac{2 + 1}{2} = \frac{3}{2}.$$ Darn!
Example of order ideal rowmotion on A_3 root poset

For the type A_3 root poset, there are 3 ρ-orbits, of sizes 8, 4, 2:

Checking the average rank-alternating cardinality for each orbit we find:

\[
\frac{1 + 2 + 2 + 1 + 1 + 2 + 2 + 1}{8} = \frac{1 + 2 + 2 + 1}{4} = \frac{2 + 1}{2} = \frac{3}{2} \quad \text{Yay!}
\]
Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan)

Let P be the root poset of type A_n. If we assign an element $x \in P$ weight $\text{wt}(x) = (-1)^{\text{rank}(x)}$, and assign an order ideal $I \in \mathcal{J}(P)$ weight $f(I) = \sum_{x \in I} \text{wt}(x)$, then f is homomesic under rowmotion and promotion, with average $n/2$. **
We have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average order ideal has cardinality $ab/2 = 2$.
Within each orbit, the average order ideal has

$1/2$ of a violet element, 1 red element, and $1/2$ of a brown element.
For $1 - b \leq k \leq a - 1$, define the kth file of $[a] \times [b]$ as

$$\{(i, j) : 1 \leq i \leq a, 1 \leq j \leq b, i - j = k\}.$$

For $1 - b \leq k \leq a - 1$, let $h_k(I)$ be the number of elements of I in the kth file of $[a] \times [b]$, so that $\#I = \sum_k h_k(I)$.

Theorem (Propp, R.)

For every ρ-orbit \mathcal{O} in $J([a] \times [b])$:

- $$\frac{1}{\#\mathcal{O}} \sum_{I \in \mathcal{O}} h_k(I) = \begin{cases} \frac{(a-k)b}{a+b} & \text{if } k \geq 0 \\ \frac{a(b+k)}{a+b} & \text{if } k \leq 0. \end{cases}$$
- $$\frac{1}{\#\mathcal{O}} \sum_{I \in \mathcal{O}} \#I = \frac{ab}{2}.$$
Whirling on posets
Definition of whirling on posets

Let \mathcal{F}_k be the set of order-reversing functions from P to \{0, 1, 2, \ldots, k\}.

\[
P = \begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array}
\quad \begin{array}{c}
1 \\
2 \\
3 \\
0 \\
\end{array} \in \mathcal{F}_3(P)
\]
Definition of whirling on posets

Let \mathcal{F}_k be the set of order-reversing functions from P to \{0, 1, 2, \ldots, k\}.

\[P = \begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array} \quad \begin{array}{c}
1 \\
2 \\
3 \\
0 \\
\end{array} \in \mathcal{F}_3(P) \]

Definition ([JPR18])

Let P be a poset. For $f \in \mathcal{F}_k(P)$ and $x \in P$ define $w_x : \mathcal{F}_k(P) \to \mathcal{F}_k(P)$, called the whirl at x, as follows: repeatedly add $1 \pmod{k+1}$ to the value of $f(x)$ until we get a function in $\mathcal{F}_k(P)$. This new function is $w_x(f)$.
Definition of whirling on posets

Let \mathcal{F}_k be the set of order-reversing functions from P to \{0, 1, 2, \ldots, k\}.

\[
P = \begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{array}
\]
\[
\begin{array}{c}
1 \\
2 \\
3 \\
\end{array} \rightarrow
\begin{array}{c}
0 \\
2 \\
2 \\
\end{array} \in \mathcal{F}_3(P)
\]

Definition ([JPR18])

Let P be a poset. For $f \in \mathcal{F}_k(P)$ and $x \in P$ define $w_x : \mathcal{F}_k(P) \rightarrow \mathcal{F}_k(P)$, called the whirl at x, as follows: repeatedly add $1 \mod k + 1$ to the value of $f(x)$ until we get a function in $\mathcal{F}_k(P)$. This new function is $w_x(f)$.

\[
\begin{array}{c}
1 \\
2 \\
3 \\
\end{array} \rightarrow
\begin{array}{c}
1 \\
3 \\
3 \\
\end{array} \rightarrow
\begin{array}{c}
1 \\
0 \\
3 \\
\end{array} \rightarrow
\begin{array}{c}
1 \\
1 \\
3 \\
\end{array} \in \mathcal{F}_3(P)
\]
Equivariant bijection between whirling and rowmotion

Now let \(\{x_1, x_2, \ldots, x_n\} \) be any linear extension of \(P \) (with \(\#P = n \)).
It is easy to show that \(w_x \) and \(w_y \) commute when \(x, y \in P \) are *incómparable*. Thus the *whirling operator* \(w := w_{x_1} w_{x_2} \cdots w_{x_n} \) is well-defined (whirling each poset element from top to bottom).

Theorem (Plante)

There is an equivariant bijection between \(F_k(P) \) and \(J(P \times [k]) \) which sends \(w \) to \(\rho_J \).

Example \((J([3] \times [4]) \text{ to } F_4([3]))\)

The number of order ideal elements in each fiber is recorded as an order-reversing function on \([3]\).
Product of two chains orbit bijection example

```
0 1 4
1 2 2
2 2 3
0 3 4
1 4 4
2 2 2
0 0 3
```
Theorem (Plante)

Let w denote the whirling operator on order-reversing functions $\mathcal{F}_k([m])$. Consider a superorbit board of w with length $k + m$.

1. The board can be partitioned into m snakes of length $k + m$ under the following rules:
 1. Start at zero in the left column.
 2. Move down the column until the label does not increase then move to the right.
 3. End once the snake contains k in the rightmost column.

An orbit board of $(0, 1, 4) \in \mathcal{F}_4([3])$:

```
0 1 4
1 2 2
2 2 3
0 3 4
1 4 4
2 2 2
0 0 3
```
Theorem (Plante)

Let \(w \) denote the whirling operator on order-reversing functions \(\mathcal{F}_k([m]) \). Consider a superorbit board of \(w \) with length \(k + m \).

2 Let \((\alpha_1, \alpha_2, \ldots, \alpha_m) \) be the segments of a snake \(\alpha \), that is, \(\alpha_i \) is the number of blocks of the snake in column \(i \). Each snake in the board has segments which are a cyclic rotation of \((\alpha_1, \alpha_2, \ldots, \alpha_m) \).

3 The average sum of values along a snake is \(k(m + k)/2 \).

An orbit board of \((0, 1, 4) \in \mathcal{F}_4([3]) \):
Orbits of a product of two chains

The 4 orbits of \(\mathcal{F}_3([3]) \) under the action of \(\omega \).

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 & 0 & 3 & 0 & 3 & 3 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 2 \\
1 & 2 & 3 & 0 & 2 & 3 & 0 & 1 & 3 \\
2 & 3 & 3 & 1 & 3 & 3 & 1 & 2 & 2 \\
3 & 3 & 3 & 2 & 2 & 2 & 2 & 2 & 3 \\
\end{array}
\]
Orbits of a product of two chains

The 4 orbits of \(F_3([3]) \) under the action of \(w \).
Orbits of a product of two chains

The 4 orbits of \(\mathcal{F}_3([3]) \) under the action of \(w \).
The $\forall \times [k]$ poset
Let V be the three-element partially ordered set with Hasse diagram

\[
\begin{array}{c}
\ell \\
c \\
r
\end{array}
\]
Let V be the three-element partially ordered set with Hasse diagram

The poset of interest is $V(k) := V \times [k]$
Order-ideal rowmotion on $V \times [k]$

Theorem (Plante)
Order ideals of V^k are reflected about the center chain after $k + 2$ iterations of ρ, and furthermore, the order of ρ on order ideals of V^k is $2(k + 2)$.
Order-ideal rowmotion on $V \times [k]$

Theorem (Plante)

Order ideals of $V(k)$ are reflected about the center chain after $k + 2$ iterations of ρ, and furthermore, the order of ρ on order ideals of $V(k)$ is $2(k + 2)$.
Map to order-reversing functions on V

1 Define $\mathcal{F}_k(V) = \{(\ell, c, r) \in \{0, \ldots, k\}^3 : \ell, r \leq c\}$.

2 Define $\phi : \mathcal{J}(V(k)) \rightarrow \mathcal{F}_k(V)$ by

$$
\phi(I) = \left(\sum \chi_{\ell_i}, \sum \chi_{c_i}, \sum \chi_{r_i}\right).
$$

$$
\phi\begin{pmatrix}
\circ \\
\circ \\
\circ \\
\bullet \\
\bullet \\
\bullet \\
\bullet
\end{pmatrix} = (0, 3, 3) \leftrightarrow 3^3
$$
Example of whirling V

We whirl the example $\ell \backslash r$ first at ℓ, r, then c.

Start with $(0, 2, 2) \in \mathcal{F}_2(V)$.
Example of rowmotion orbit with triples
Alternatively we may define \(w \) on \((\ell, c, r) \in \mathcal{F}_k(V)\) as the process:

1. \(\ell \rightarrow \ell + 1 \) unless \(\ell = c \), then \(\ell \rightarrow 0 \).
Alternatively we may define \(w \) on \((\ell, c, r) \in \mathcal{F}_k(V)\) as the process:

1. \(\ell \to \ell + 1 \) unless \(\ell = c \), then \(\ell \to 0 \).

2. Repeat step 1 with \(r \) instead of \(\ell \).
Equivariant bijection example

Alternatively we may define w on $(\ell, c, r) \in \mathcal{F}_k(V)$ as the process:

1. $\ell \rightarrow \ell + 1$ unless $\ell = c$, then $\ell \rightarrow 0$.
2. Repeat step 1 with r instead of ℓ.
3. $c \rightarrow c + 1$ unless $c = k$, then $c \rightarrow \max(\ell, r)$.

Corollary

The map ϕ is an equivariant bijection that sends ρ to w.

$$
\begin{array}{c}
\mathcal{J}(V(k)) \\ \downarrow \phi \\
\mathcal{F}_k(V) \\
\end{array} \xrightarrow{\rho} \begin{array}{c}
\mathcal{J}(V(k)) \\ \uparrow \phi \\
\mathcal{F}_k(V) \\
\end{array}
$$

$$
\begin{array}{c}
\mathcal{F}_k(V) \\ \downarrow w \\
\mathcal{F}_k(V) \\
\end{array}
$$
Theorem (Plante)

Order ideals of $V(k)$ are reflected about the center chain after $k + 2$ iterations of ρ, and furthermore, the order of ρ on order ideals of $V(k)$ is $2(k + 2)$.

Direct inspection of order-reversing functions on V as tuples gives a straightforward proof of periodicity.
Theorem (Plante)

For the action of rowmotion on order ideals of $V(k)$:

1. The statistic $\chi_{\ell_1} + \chi_{r_1} - \chi_{c_k}$ is $\frac{2(k-1)}{k+2}$-mesic.

\[
\begin{array}{c c c c}
0 & 0 & -1 & 0 \\
+1 & 0 & +1 & 0
\end{array}
\]
Homomesy

Theorem (Plante)

For the action of rowmotion on order ideals of $V(k)$:

1. The statistic $\chi_{\ell_1} + \chi_{r_1} - \chi_{c_k}$ is $\frac{2(k-1)}{k+2}$-mesic.

2. The statistic $\chi_{r_i} - \chi_{\ell_i}$ is 0-mesic for each $i = 1, \ldots, k$, where χ_x is the indicator function.
We decompose the orbit board into 6 snakes of length $k + 2$. Or 2 two-tailed snakes if the order-reversing functions are symmetric. Recall that snakes start at the top of a poset and move down. Since the least element of V is in the center, we call these snakes, center-seeking snakes.
Sketch of Proof of Homomesy

\[\sum \chi_{\ell_1} + \chi_{r_1} - \chi_{c_k} \]

\[= (2(k+2) - 3) + (2(k+2) - 3) - 6 \]

Thus we see

\[\frac{4(k + 2) - 12}{2(k + 2)} = \frac{2k - 2}{k + 2}. \]
There is another nice looking homomesy. Let \(F_i = \chi_{\ell_i} + \chi_{r_i} + \chi_{c_{i-1}} \), which has the following flux-capacitor shape in \(V(k) \).

\[F_3 - F_2 \]

Theorem

The difference \(F_i - F_j \) is \(\frac{(i - j)}{k + 2} \)-mesic.
Flux Capacitor??

[Video Link: https://www.youtube.com/watch?v=VcZe8_RZO8c]
Flux Capacitor??

https://www.youtube.com/watch?v=VcZe8_RZ08c
References

Studying dynamics on objects in algebraic combinatorics is interesting, particularly with regard to questions of periodicity/order, orbit structure, homomesy, and equivariant bijections.

Actions that can be built out of smaller, simpler actions (toggles and whirls) often have interesting and unexpected properties.

Much more remains to be explored, perhaps for combinatorial objects or actions that you work with for other reasons.

Slides for this talk will be available online at Google “Tom Roby”.

Thanks very much for coming to this talk!