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Abstract

Abstract: Dynamical Algebraic Combinatorics explores actions on sets of discrete
combinatorial objects, many of which can be built up by small local changes, e.g.,
Schützenberger’s promotion and evacuation, or the rowmotion map on order ideals. There are
strong connections to the combinatorics of representation theory and with Coxeter groups.
Birational liftings of these actions are related to the Y-systems of statistical mechanics, thereby
to cluster algebras, in ways that are still relatively unexplored.

The term “homomesy” describes the following widespread phenomenon: Given a group action on
a set of combinatorial objects, a statistic on these objects is called “homomesic” if its average
value is the same over all orbits. Along with its intrinsic interest as a kind of “hidden invariant”,
homomesy can be used to prove certain properties of the action, e.g., facts about the orbit sizes.
Homomesy can often be found among the same dynamics that afford cyclic sieving. Proofs of
homomesy often involve developing tools that further our understanding of the underlying
dynamics, e.g., by finding an equivariant bijection.

This talk will be a introduction to these ideas, giving a number of examples of such actions and
pointing out connections to other areas.
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Analogy & Outline

Given a dynamical system (moving among discrete possibilities or swinging pedulum) we can
identify:

orbit structure (how many, what sizes);

invariants, e.g., kinetic energy PLUS potential energy;

quantities/measurements vary over time, but have same average regardless of where the
system starts, e.g., average angular displacement from rest. These homomesies are
complementary to invariants, and have their own story.

Themes in Dynamical Algebraic Combinatorics:

1) Periodicity/order ; 1)Orbit structure; 1)Homomesy 1)Equivariant bijections

Cyclic rotation of binary strings and definition of homomesy;
Toggling independent sets of path graph; and
Rowmotion map on antichains and order ideals of posets;
Piecewise-linear and birational liftings;
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Cyclic rotation of binary strings



Cyclic rotation of binary strings

Let Sn,k be the set of length n binary strings with k 1s.
Let CR : Sn,k → Sn,k be rightward cyclic rotation.

Example
Cyclic rotation for n = 6, k = 2:

101000 7−→ 010100
CR



Cyclic rotation of binary strings

An inversion of a binary string is a pair of positions (i , j) with i < j such that there is a
1 in position i and a 0 in position j .

Example
Orbits of cyclic rotation for n = 6, k = 2:

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2
100010 5 000011 0
010001 3 100001 4

Average 4 Average 4 Average 4
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Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic”) f : S → K where K is a field of characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a constant c ∈ K such
that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c .

In this case, we say that the function f is homomesic with average c (also called
c-mesic) under the action of τ on S .
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Homomesy

Theorem (Propp & R. [PrRo15, §2.3])

Let I(s) denote the number of inversions of s ∈ Sn,k .

Then the function I : Sn,k → Q is homomesic with average k(n−k)
2 with respect to cyclic

rotation on Sn,k .

Proof.
Consider superorbits of length n. Show that replacing “01” with “10” in a string s leaves
the total number of inversions in the superorbit generated by s unchanged (and thus the
average since our superorbits all have the same length).
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n = 6, k = 2
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Cyclic rotation of binary strings

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2 100100 6
100010 5 000011 0 010010 4
010001 3 100001 4 001001 2
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Cyclic rotation of binary strings

Example

Inversions
String String Change
101000 011000 -1
010100 001100 -1
001010 000110 -1
000101 000011 -1
100010 100001 -1
010001 110000 +5

There are other homomesic statistics as well, e.g., Let 1j(s) := sj , the jth bit of the
string s. Can you see why this is homomesic?



Homomesy

Since its initial codification about 5 years ago, a large number of examples of the
homomesy phenomenon have been identified across dynamical algebraic combinatorics.
These include:

Promotion of SSYT;
Rowmotion of “nice” (e.g., minuscule heap)
posets [PrRo15, StWi11, Had14, RuWa15+];

In general, composing certain involutions called “toggles” on the set leads to
operations with interesting homomesy [Str18];
Toggling the “arcs” in noncrossing partitions [EFGJMPR16];
Whirling functions between finite sets: injections, surjections, parking functions,
etc. [JPR17+]; and
Liftings of homomesy from combinatorial maps to piecewise linear and birational
maps [EiPr13, GrRo16, GrRo15b].
There are many others, including in upcoming examples.
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Coxeter Toggling

Independent Sets

of Path Graphs



Independent Sets of a Path Graph

Definition
An independent set of a graph is a subset of the vertices that does not contain any
adjacent pair.

Let In denote the set of independent sets of the n-vertex path graph Pn. We usually
refer to an independent set by its binary representation.

Example
is written 1010100.

In this case, In refers to all binary strings with length n that do not contain the factor 11.
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Toggles

Definition (Striker - generalized earlier concept of Cameron and Fon-der-Flaass)

For 1 ≤ i ≤ n, the map τi : In → In, the toggle at vertex i is defined in the following
way. Given S ∈ In:

if i ∈ S , τi removes i from S ,
if i ̸∈ S , τi adds i to S , if S ∪ {i} is still independent,
otherwise, τi (S) = S .

Formally,

τi (S) =


S \ {i} if i ∈ S
S ∪ {i} if i ̸∈ S and S ∪ {i} ∈ In
S if i ̸∈ S and S ∪ {i} ̸∈ In

.



Toggles

Proposition

Each toggle τi is an involution, i.e., τ2
i is the identity. Also, τi and τj commute if and only if

|i − j | ≠ 1.

Definition
Let φ := τn ◦ · · · ◦ τ2 ◦ τ1, which applies the toggles left to right.

Example

In I5, φ(10010) = 01001 by the following steps:

10010 τ17−→ 00010 τ27−→ 01010 τ37−→ 01010 τ47−→ 01000 τ57−→ 01001.



Homomesy

Here is an example φ-orbit in I7, containing 1010100. In this case, φ10(S) = S .

1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1

Total: 4 2 3 2 3 2 4
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Theorem (Joseph-R.[JR18])

Define 1i : In → {0, 1} to be the indicator function of vertex i .

For 1 ≤ i ≤ n, 1i − 1n+1−i is 0-mesic on φ-orbits of In.
Also 211 + 12 and 1n−1 + 21n are 1-mesic on φ-orbits of In.
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Idea of the proof that 1i − 1n+1−i is 0-mesic: Given a 1 in an “orbit board”, if the 1 is not in the right
column, then there is a 1 either

2 spaces to the right,
or 1 space diagonally down and right,

and never both.
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Idea of the proof that 1i − 1n+1−i is 0-mesic: This allows us to partition the 1’s in the orbit board into
snakes that begin in the left column and end in the right column.

This technique is similar to one used by Shahrzad Haddadan to prove homomesy in orbits of an invertible
map called “winching” on k-element subsets of {1, 2, . . . , n}.
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Idea of the proof that 1i − 1n+1−i is 0-mesic: Each snake corresponds to a composition of n − 1 into
parts 1 and 2. Also, any snake determines the orbit!

1 refers to 1 space diagonally down and right
2 refers to 2 spaces to the right
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Red snake composition: 221121
Purple snake composition: 211212
Orange snake composition: 112122
Green snake composition: 121221
Blue snake composition: 212211

Brown snake composition: 122112



More Consequences of Snakes

Besides homomesy, this snake representation can be used to explain a lot about the
orbits (particularly the orbit sizes, i.e. the number of independent sets in an orbit).

When n is even, all orbits have odd size.
“Most” orbits in In have size congruent to 3(n − 1) mod 4.
The number of orbits of In (OEIS A000358)
And much more...

Using elementary Coxeter theory, it’s possible to extend our main theorem to other
“Coxeter elements” of toggles. We get the same homomesy if we toggle exactly once at
each vertex in any order.



Antichain Rowmotion

on Posets



Rowmotion: an invertible operation on antichains

Let A(P) be the set of antichains of a finite poset P .

Given A ∈ A(P), let ρA(A) be the set of minimal elements of the complement of the
downward-saturation of A.

ρA is invertible since it is a composition of three invertible operations:

antichains←→ downsets←→ upsets←→ antichains

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

This map and its inverse have been considered with varying degrees of generality, by many
people more or less independently (using a variety of nomenclatures and notations): Duchet,
Brouwer and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and
Striker and Williams, who named it rowmotion.
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Example in lattice cell form

Viewing the elements of the poset as squares below, we would map:

Area = 8

X X
−→

Area = 10

X

X X



Panyushev’s conjecture (AST’s theorem)

Let ∆ be a (reduced irreducible) root system in Rn. (Pictures soon!)

Choose a system of positive roots and make it a poset of rank n by decreeing that y covers x iff
y − x is a simple root.

Theorem (Armstrong-Stump-Thomas [AST11], Conj. [Pan09])

Let O be an arbitrary ρA-orbit. Then

1
#O

∑
A∈O

#A =
n

2
.

In our language, the cardinality statistic is homomesic with respect to the action of rowmotion
on antichains in root posets.



Picture of root posets

Here are the classes of posets included in Panyushev’s conjecture.

(Graphic courtesy of Striker-Williams.)



Panyushev’s conjecture: The An case, n = 2

Here we have just an orbit of size 2 and an orbit of size 3:

0 2 1

1 1

1

Within each orbit, the average antichain has cardinality n/2 = 1.



Example of antichain rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

 # #

#

 # −→

# # #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

# #  

#

#  ↰

# # #

#

# # −→

# # #

#

# # −→

   

#

  −→

# # #

 

# # ↰

# # #

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

0 + 3 + 2 + 1
4

=
2 + 1

2
=

3
2
.



Antichains in [a]× [b]: cardinality is homomesic

A simpler-to-prove phenomenon of this kind concerns the poset [a]× [b] (the type A minuscule
poset), where [k] = {1, 2, . . . , k}:
Theorem (Propp, R.)

Let O be an arbitrary ρA-orbit in A([a]× [b]). Then
1

#O
∑
A∈O

#A =
ab

a+ b
.

This proof uses an non-obvious equivariant
bijection (the “Stanley–Thomas” word [Sta09,
§2]) between order ideals in [a]× [b] and
binary strings, which carries the ρJ map to
cyclic rotation of bitstrings.

The right figure shows the Stanley–Thomas
word for a 3-element antichain in A([7]× [5]).
Red and black correspond to +1 and −1
respectively.

7

6

5

4

3

2

1 8

9

10

11
12

-1+1-1-1-1 -1 -1 -1+1+1 +1 +1

(Graphic courtesy of Ben Young.)



Antichains in [a]× [b]: cardinality is homomesic

Theorem (Propp, R.)

Let O be an arbitrary ρA-orbit in A([a]× [b]). Then
1

#O
∑
A∈O

#A =
ab

a+ b
.

This proof uses an non-obvious equivariant
bijection (the “Stanley–Thomas” word [Sta09,
§2]) between order ideals in [a]× [b] and
binary strings, which carries the ρJ map to
cyclic rotation of bitstrings.

The right figure shows the Stanley–Thomas
word for a 3-element antichain in A([7]× [5]).
Red and black correspond to +1 and −1
respectively.

7

6

5

4

3

2

1 8

9

10

11
12

-1+1-1-1-1 -1 -1 -1+1+1 +1 +1

(Graphic courtesy of Ben Young.)



Antichains in [a]× [b]: the case a = b = 2

Here we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average antichain has cardinality ab/(a+ b) = 1.

0 1 2 1

1 1

1



Antichains in [a]× [b]: fiber-cardinality is homomesic

0 0 0 1 1 1 1 0

1 0 0 1

1

Within each orbit, the average antichain has

1/2 of a green element and 1/2 of a blue element.



Antichains in [a]× [b]: fiber-cardinality is homomesic

For (i , j) ∈ [a]× [b], and A an antichain in [a]× [b], let 1i ,j(A) be 1 or 0 according to
whether or not A contains (i , j).

Also, let fi (A) =
∑

j∈[b] 1i ,j(A) ∈ {0, 1} (the cardinality of the intersection of A with the
fiber {(i , 1), (i , 2), . . . , (i , b)} in [a]× [b]), so that #A =

∑
i fi (A).

Likewise let gj(A) =
∑

i∈[a] 1i ,j(A), so that #A =
∑

j gj(A).

Theorem (Propp, R.)

For all i , j ,

1
#O

∑
A∈O

fi (A) =
b

a+ b
and

1
#O

∑
A∈O

gj(A) =
a

a+ b
.

The indicator functions fi and gj are homomesic under ρA, even though the indicator
functions 1i ,j aren’t.



Antichains in [a]× [b]: centrally symmetric homomesies

Theorem (Propp, R.)

In any orbit, the number of A that contain (i , j) equals the number of A that contain the
opposite element (i ′, j ′) = (a+ 1− i , b + 1− j).

That is, the function 1i ,j − 1i ′,j ′ is homomesic under ρA, with average value 0 in each
orbit.



Rowmotion on order ideals

We’ve already seen examples of Rowmotion on antichains ρA:

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

We can also define it as an operator ρJ on J(P), the set of order ideals of a poset P , by
shifting the waltz beat by 1:

# #

ρJ :  # # −→

  

  

#   −→

# #

# #

#   −→

# #

# #

#   

  



Rowmotion on [4]× [2]: Orbit 1



Rowmotion on [4]× [2]: Orbit 1

1

Area = 0

2

Area = 1

3

Area = 3

4

Area = 5

5

Area = 7

6

Area = 8

(0+1+3+5+7+8) / 6 = 4



Rowmotion on [4]× [2]: Orbit 2



Rowmotion on [4]× [2]: Orbit 2

1

Area = 2

2

Area = 4

3

Area = 6

4

Area = 6

5

Area = 4

6

Area = 2

(2+4+6+6+4+2) / 6 = 4



Rowmotion on [4]× [2]: Orbit 3



Rowmotion on [4]× [2]: Orbit 3

1

Area = 3

2

Area = 5

3

Area = 4

4

Area = 3

5

Area = 5

6

Area = 4

(3+5+4+3+5+4) / 6 = 4



Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρJ -orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 4 + 3 + 1 + 2 + 4 + 3

8
=

5
2
;

0 + 3 + 5 + 6
4

=
7
2
;

2 + 1
2

=
3
2
. Darn!



Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average rank-alternating cardinality for each orbit we find:
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

1 + 2 + 2 + 1
4

=
2 + 1

2
=

3
2

Yay!



Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan)

Let P be the root poset of type An. If we assign an element x ∈ P weight
wt(x) = (−1)rank(x), and assign an order ideal I ∈ J(P) weight f (I ) =

∑
x∈I wt(x),

then f is homomesic under rowmotion and promotion, with average n/2.



Ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average order ideal has cardinality ab/2 = 2.

0 1 3 4

2 2

1



Ideals in [a]× [b]: file-cardinality is homomesic

0 0 0 0 1 0 1 1 1 1 2 1

1 1 0 0 1 1

1

Within each orbit, the average order ideal has

1/2 of a violet element, 1 red element, and 1/2 of a brown element.



Ideals in [a]× [b]: file-cardinality is homomesic

For 1− b ≤ k ≤ a− 1, define the kth file of [a]× [b] as

{(i , j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, i − j = k}.

For 1− b ≤ k ≤ a− 1, let hk(I ) be the number of elements of I in the kth file of
[a]× [b], so that #I =

∑
k hk(I ).

Theorem (Propp, R.)

For every ρJ -orbit O in J([a]× [b]):

• 1
#O

∑
I∈O

hk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.

• 1
#O

∑
I∈O

#I =
ab

2
.



Rowmotion via Toggling



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into many small
operations, each an involution.

Let v ∈ P and S ∈ J(P). Define tv (S) as:
S △ {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains an order ideal, i.e.
within J(P); otherwise, leave S fixed.”)
More formally, if P is a poset and v ∈ P , then the v-toggle is the map
tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are in S already;
S \ {v}, if v is in S but none of the elements of P covering v is in S ;
S otherwise.

Note that t2v = id.



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into many small
operations, each an involution.

Let v ∈ P and S ∈ J(P). Define tv (S) as:
S △ {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains an order ideal, i.e.
within J(P); otherwise, leave S fixed.”)

More formally, if P is a poset and v ∈ P , then the v-toggle is the map
tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are in S already;
S \ {v}, if v is in S but none of the elements of P covering v is in S ;
S otherwise.

Note that t2v = id.



Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into many small
operations, each an involution.

Let v ∈ P and S ∈ J(P). Define tv (S) as:
S △ {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains an order ideal, i.e.
within J(P); otherwise, leave S fixed.”)
More formally, if P is a poset and v ∈ P , then the v-toggle is the map
tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are in S already;
S \ {v}, if v is in S but none of the elements of P covering v is in S ;
S otherwise.

Note that t2v = id.



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list of all elements of P
(each only once) such that i < j whenever vi < vj .
Cameron and Fon-der-Flaass showed that

ρJ = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

Start with this order ideal S :

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list of all elements of P
(each only once) such that i < j whenever vi < vj .
Cameron and Fon-der-Flaass showed that

ρJ = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

First apply t(1,1), which changes nothing:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list of all elements of P
(each only once) such that i < j whenever vi < vj .
Cameron and Fon-der-Flaass showed that

ρJ = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

Then apply t(1,0), which removes (1, 0) from the order ideal:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list of all elements of P
(each only once) such that i < j whenever vi < vj .
Cameron and Fon-der-Flaass showed that

ρJ = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

Then apply t(0,1), which adds (0, 1) to the order ideal:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list of all elements of P
(each only once) such that i < j whenever vi < vj .
Cameron and Fon-der-Flaass showed that

ρJ = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

Finally apply t(0,0), which changes nothing:

(1, 1)

(1, 0) (0, 1)

(0, 0)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P ; this means a list of all elements of P
(each only once) such that i < j whenever vi < vj .
Cameron and Fon-der-Flaass showed that

ρJ = tv1 ◦ tv2 ◦ ... ◦ tvn .

Hugh Thomas and Nathan Williams call this Rowmotion in slow motion [ThWi17].

Example: Re-coordinatizing P = [a]× [b] = [0, r ]× [0, s], sorry!

So this is S −→ r(S):

(1, 1)

(1, 0) (0, 1)

(0, 0)

−→ (1, 1)

(1, 0) (0, 1)

(0, 0)



Piecewise-linear and

birational liftings



Generalizing to the piecewise-linear setting

The decomposition of classical rowmotion into toggles allows us to define a
piecewise-linear (PL) version of rowmotion acting on functions on a poset.

For a finite poset P , let P̂ denote P with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of functions
f : P̂ → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y) whenever x ≤P y .

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f to the unique f ′

satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz⋗x f (z) + maxw⋖x f (w)− f (x) if y = x ,

where z ⋗ x means z covers x and w ⋖ x means x covers w .



Generalizing to the piecewise-linear setting

The decomposition of classical rowmotion into toggles allows us to define a
piecewise-linear (PL) version of rowmotion acting on functions on a poset.

For a finite poset P , let P̂ denote P with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of functions
f : P̂ → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y) whenever x ≤P y .

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f to the unique f ′

satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz⋗x f (z) + maxw⋖x f (w)− f (x) if y = x ,

where z ⋗ x means z covers x and w ⋖ x means x covers w .



Generalizing to the piecewise-linear setting

The decomposition of classical rowmotion into toggles allows us to define a
piecewise-linear (PL) version of rowmotion acting on functions on a poset.

For a finite poset P , let P̂ denote P with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of functions
f : P̂ → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y) whenever x ≤P y .

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f to the unique f ′

satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz⋗x f (z) + maxw⋖x f (w)− f (x) if y = x ,

where z ⋗ x means z covers x and w ⋖ x means x covers w .



Generalizing to the piecewise-linear setting

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f to the unique f ′

satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz⋗x f (z) + maxw⋖x f (w)− f (x) if y = x ,

where z ⋗ x means z covers x and w ⋖ x means x covers w .

Note that the interval [minz⋗x f (z),maxw⋖x f (w)] is precisely the set of values that
f ′(x) could have so as to satisfy the order-preserving condition.

if f ′(y) = f (y) for all y ̸= x , the map that sends

f (x) to min
z⋗x

f (z) + max
w⋖x

f (w)− f (x)

is just the affine involution that swaps the endpoints.



Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z⋗x

f (z) + max
w⋖x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9



Composing flips

Just as we can apply toggle-maps from top to bottom, we can apply flip-maps from top
to bottom, to get piecewise-linear rowmotion:

.8 .6 .6

.4 .3
σN

→ .4 .3
σW

→ .3 .3

.1 .1 .1

.6 .6
σE

→ .3 .4
σS

→ .3 .4

.1 .2

(We successively flip at N = (1, 1), W = (1, 0), E = (0, 1), and S = (0, 0) in order.)



Composing flips and example of PL rowmotion orbit

We can apply flip-maps from top to bottom (successively flipping at N = (1, 1),
W = (1, 0), E = (0, 1), and S = (0, 0) in order.), to get piecewise-linear rowmotion:

.8 .6 .6 .6 .6

.4 .3
σN

→ .4 .3
σW

→ .3 .3
σE

→ .3 .4
σS

→ .3 .4

.1 .1 .1 .1 .2

Here’s an orbit of this map (τ = σS ◦ σE ◦ σW ◦ σN), which again has period 4.

.8 .6 .8 .9

τ

vv

.4 .3 τ→ .3 .4 τ→ .7 .6 τ→ .6 .7

.1 .2 .4 .2



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary ring operations (+, ·)
with the tropical operations (max,+). In the piecewise-linear (PL) category of the order
polytope studied above, our flipping-map at x replaced the value of a function
f : P → [0, 1] at a point x ∈ P with f ′, where

f ′(x) := min
z⋗x

f (z) + max
w⋖x

f (w)− f (x)

We can “detropicalize” this flip map and apply it to an assignment f : P → R(x) of
rational functions to the nodes of the poset, using that

min(zi ) = −max(−zi ), to get the birational toggle map

(Tx f )(x) = f ′(x) =

∑
w⋖x f (w)

f (x)
∑

z⋗x
1

f (z)



Birational rowmotion: definition

For a field K, a K-labelling of P will mean a function f : P̂ → K. We always set
f (0̂) = f (1̂) = 1.
For any v ∈ P , define the birational v-toggle as the rational map

Tv : KP̂ 99K KP̂ defined by (Tv f ) (w) =

∑
P̂∋u⋖v

f (u)

f (v)
∑

P̂∋u⋗v

1
f (u)

for w = v .

(We leave (Tv f ) (w) = f (w) when w ̸= v .)

This is a local change only to the label at v , and T 2
v = id (on the range of Tv ).

We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P .



Birational rowmotion: definition

For a field K, a K-labelling of P will mean a function f : P̂ → K. We always set
f (0̂) = f (1̂) = 1.
For any v ∈ P , define the birational v-toggle as the rational map

Tv : KP̂ 99K KP̂ defined by (Tv f ) (w) =

∑
P̂∋u⋖v

f (u)

f (v)
∑

P̂∋u⋗v

1
f (u)

for w = v .

(We leave (Tv f ) (w) = f (w) when w ̸= v .)
This is a local change only to the label at v , and T 2

v = id (on the range of Tv ).
We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P .



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension ((1, 1), (1, 0), (0, 1), (0, 0)).

That is, toggle in the order “top, left, right, bottom”.



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension ((1, 1), (1, 0), (0, 1), (0, 0)).

That is, toggle in the order “top, left, right, bottom”.



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)f

1

z

x y

w

1

1

(x+y)
z

x y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).
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Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,0)T(0,1)T(1,0)T(1,1)f = ρB f

1

z

x y

w

1
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z
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xz

w(x+y)
yz

1
z

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion orbit on a product of chains

Example: Iterating this procedure we get

(x+y)
z

ρB f = (x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

ρ2
B f = 1

y
1
x

z
x+y ,

1
w

ρ3
B f = yz

(x+y)w
xz

(x+y)w

xy
(x+y)w ,

z

ρ4
B f = x y

w .

Notice that ρ4
B f = f , which generalizes to ρr+s+2

B f = f for P = [0, r ]× [0, s]
[Grinberg-R 2015]. Notice also “antipodal reciprocity”.
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Why study this generalization?

Motivations and Connections

Classical rowmotion is closely related to the Auslander-Reiten translation in quivers
arising in certain special posets (e.g., rectangles) [Yil17].
This generalization implies the results at the PL and combinatorial level (but not
vice-versa).
Birational rowmotion can be related to Y -systems of type Am × An described in
Zamolodchikov periodicity [Rob16, §4.4].
The orbits of these maps all have natural homomesic
statistics [PrRo15, EiPr13, EiPr14].
Periodicity of these systems is generally nontrivial to prove.



Birational homomesy on files of J([0, r ]× [0, s])

The poset [0, 1]× [0, 1] has three files, {(1, 0)}, {(0, 0), (1, 1)}, and {(0, 1)}.

Multiplying over all iterates of birational rowmotion in a given file, we get

ρB(f )(1, 0)ρ2
B(f )(1, 0)ρ

3
B(f )(1, 0)ρ

4
B(f )(1, 0) =

(x + y)w

xz

1
y

yz

(x + y)w
(x) = 1,

ρB(f )(0, 0)ρB(f )(1, 1)ρ2
B(f )(0, 0)ρ

2
B(f )(1, 1)ρ

3
B(f )(0, 0)ρ

3
B(f )(1, 1)ρ

4
B(f )(0, 0)ρ

4
B(f )(1, 1) =

1
z

x + y

z

z

x + y

(x + y)w

xy

xy

(x + y)w

1
w

(x) (z) = 1,

ρB(f )(0, 1)ρ2
B(f )(0, 1)ρ

3
B(f )(0, 1)ρ

4
B(f )(0, 1) =

(x + y)w

yz

1
x

xz

(x + y)w
(y) = 1.

Each of these products equalling one is the manifestation, for the poset of a product of
two chains, of homomesy along files at the birational level.
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Birational homomesy on files of J([0, r ]× [0, s])

Theorem ([GrRo15b, Thm. 30, 32])

(1) The birational rowmotion map ρB on the product of two chains P = [0, r ]× [0, s] is
periodic, with period r + s + 2.

(2) The birational rowmotion map ρB on the product of two chains P = [0, r ]× [0, s]
satisfies the following reciprocity: ρi+j+1

B = 1/ρ0
B(r − i , s − j) = 1

xr−i,s−j
.

Theorem (Musiker-R [MR19])

Given a file F in [0, r ]× [0, s],
r+s+1∏
k=0

∏
(i ,j)∈F

ρkB(i , j) = 1.

The proof of this involves constructing a complicated formula for the ρkB in terms of
families of non-intersecting lattice paths, from which one can also deduce periodicity and
the other geometric homomesies of this map, first proved by Grinberg-R [GrRo15b,
Thm. 32].
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Noncommutative Liftings

Much of this story lifts to skew fields, where the variables are not assumed to commute.

In this setting toggles are no longer involutions, but the NC analogue of ρB can be
defined, and their inverses can be included in the study.
Periodicity miraculously still appears to hold, though we have no proofs and
computer experiments are much more challenging.
In parallel with the lifting of ρJ to ρB , there is a lifting of ρA via Stanley’s Chain
polytope to birational (BAR-motion) and NC (NAR-motion) [JR19+].
The Stanley–Thomas word which we used to show periodicity and homomesy for ρA
lifts all the way to the NC setting, where it still shows homomesy. However, it does
not show periodicity outside the combinatorial realm, since it no longer losslessly
encodes the labelings [JR20+].



Summary and Take Aways

• Studying dynamics on objects in algebraic combinatorics is interesting, particularly
with regard to our THEMES:
1) Periodicity/order ; 2) Orbit structure; 3) Homomesy 4) Equivariant bijections

• Examples of cyclic sieving are also ripe for homomesy hunting.

• Situations in which maps can be built out of toggles seem particularly fruitful.

• Combinatorial objects are often discrete “shadows” of continuous PL objects, which
in turn reflect algebraic dynamics. But combinatorial tools are still frequently useful, even
at this level.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

Thanks very much for coming to this talk!

Tack så mycket! どうも有り難う御座いました。

http://www.math.uconn.edu/~troby/research.html
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