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Abstract

Abstract: Given a group acting on a finite set of combinatorial
objects, one can often find natural statistics on these objects which
are homomesic, i.e., over each orbit of the action, the average value
of the statistic is the same. Since the notion was codified a few
years ago, homomesic statistics have been uncovered in a wide
variety of situations within dynamical algebraic combinatorics. We
discuss several examples lurking in Rota’s Twelvefold Way related to
actions on injections, surjections (joint work with Michael Joseph),
and bijections/permutations (joint work with Michael LaCroix) of
finite sets.
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Subset Rotation

Among the most basic objects counted by the Twelvefold Way are
subsets, counted by binomial coefficients.

Set [n] := {1, 2, . . . n}.(
[n]
k

)
= {k-element subsets of [n]}.

For example,
(
[7]
3

)
consists of 35 subsets (dropping braces &

commas): 123, 124, 125, 126, 127, 134, 135, 136, 137, 145, 146,
147, 156, 157, 167, 234,. . .

The map that adds 1 to each element mod n acts on
(
[n]
k

)
.

156 7→ 267 7→ 137 7→ 124 7→ 235 7→ 346 7→ 457 7→ 156

It’s easy to see that the cardinality of each orbit of this action is a
divisor of n.



Rotation of bit-strings

We find another unexpected structure in the orbits if we consider

S =
(
[n]
k

)
, as length n binary strings with k 1’s as we cyclically shift

them. τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1, and

count f (b) = #inversions(b) = #{i < j : bi > bj}.

EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 1010
1100 0101
0110
0011
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Rotation of bit-strings

We find another unexpected structure in the orbits if we consider

S =
(
[n]
k

)
, as length n binary strings with k 1’s as we cyclically shift

them. τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1, and

count f (b) = #inversions(b) = #{i < j : bi > bj}.
EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 7→ 2 1010 7→ 3
1100 7→ 4 0101 7→ 1
0110 7→ 2 AVG = 4

2 = 2
0011 7→ 0

AVG= 8
4 = 2



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101

We know two simple ways to prove this: one can show pictorially
that the value of the sum doesn’t change when you mutate b
(replacing a 01 somewhere in b by 10 or vice versa), or one can
write the number of inversions in b as

∑
i<j bi (1− bj) and then

perform algebraic manipulations.
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More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001
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write the number of inversions in b as

∑
i<j bi (1− bj) and then
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Note that in each of the three orbits average of the statistic f is the
same.

We know two simple ways to prove this: one can show pictorially
that the value of the sum doesn’t change when you mutate b
(replacing a 01 somewhere in b by 10 or vice versa), or one can
write the number of inversions in b as

∑
i<j bi (1− bj) and then

perform algebraic manipulations.



Main Definition: Homomesic statistics

Definition ([PrRo15])

Given an (invertible) action τ on a finite set of objects S , call a
statistic f : S → C homomesic with respect to (S , τ) iff the
average of f over each τ -orbit O is the same constant c for all O,

i.e.,
1

#O
∑

s∈O
f (s) = c does not depend on the choice of O.

(Call f c-mesic for short.)

Equivalently: the average of f over each τ -orbit O
is the same as the average over the entire set S :

1

#O
∑

s∈O
f (s) =

1

#S

∑

s∈S

f (s).

So we can compute what the average should be
before checking whether a statistic is homomesic.
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Homomesy

Since its initial codification about 5 years ago, a large number of
examples of the homomesy phenomenon have been identified across
dynamical algebraic combinatorics. These include:

Promotion of SSYT; Rowmotion of “nice” (e.g., minuscule
heap) posets [PrRo15, StWi11, RuWa15+] ;

In general, composing certain involutions called “toggles” on
the set leads to operations with interesting
homomesy [Str15+];

Toggling the “arcs” in noncrossing partitions [E+15+];

Toggling independent sets of a path graph [JoRo16+]; and

Liftings of homomesy from combinatorial actions to piecewise
linear and birational maps [EiPr13, GrRo16, GrRo15b].

There are many others.
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Rota’s Twelvefold Way

The Twelvefold Way is a framework for basic combinatorial
counting problems, concevied by G.-C. Rota. It counts
#{f : [n] → [x ]}, where objects may be considered distinct or
indistinct, and the functions arbitrary, injective, or surjective.
Quoting EC1ed2 :[Stan11, § 1.9]

are all equivalence relations, and the number of “different” functions with respect to one of
these equivalences simply means the number of equivalence classes. If f and g are equiva-
lent (in any of the above ways), then f is injective (respectively, surjective) if and only if
g is injective (respectively, surjective). We therefore say that the notions of injectivity and
surjectivity are compatible with the equivalence relation. By the “number of inequivalent
injective functions f : N → X,” we mean the number of equivalence classes all of whose
elements are injective.

We are now ready to present the Twelvefold Way. The twelve entries are numbered and will
be discussed individually. The table gives the number of inequivalent functions f : N → X
of the appropriate type, where #N = n and #X = x.

The Twelvefold Way
Elements

ofN
Elements

ofX
Any f Injective f Surjective f

dist. dist. 1. xn 2. (x)n
3. x!S(n, x)

indist. dist. 4.
((

x
n

))
5.

(
x
n

)
6.

((
x

n−x

))

dist. indist.
7. S(n, 0) + S(n, 1)

+ · · · + S(n, x)

8. 1 if n ≤ x
0 if n > x

9. S(n, x)

indist. indist.
10. p0(n) + p1(n)

+ · · · + px(n)

11. 1 if n ≤ x
0 if n > x

12. px(n)

Discussion of Twelvefold Way Entries

1. For each a ∈ N , f(a) can be any of the x elements of X. Hence there are xn functions.

2. Say N = {a1, . . . , an}. Choose f(a1) in x ways, then f(a2) in x − 1 ways, and so on,
giving x(x− 1) · · · (x− n + 1) = (x)n choices in all.

3.∗ A partition of a finite set N is a collection π = {B1, B2, . . . , Bk} of subsets of N such
that

a. Bi ̸= ∅ for each i

b. Bi ∩ Bj = ∅ if i ̸= j

c. B1 ∪ B2 ∪ · · · ∪ Bk = N .

(Contrast this definition with that of an ordered partition in the proof of Lemma 1.4.11,
for which the subsets B1, . . . , Bk are linearly ordered.) We call Bi a block of π, and we
say that π has k blocks, denoted |π| = k. Define S(n, k) to be the number of partitions of
an n-set into k-blocks. The number S(n, k) is called a Stirling number of the second kind.
(Stirling numbers of the first kind were defined preceding Lemma 1.3.6.) By convention, we
put S(0, 0) = 1. We use notation such as 135-26-4 to denote the partition of [6] with blocks
{1, 3, 5}, {2, 6}, {4}. For instance, S(4, 2) = 7, corresponding to the partitions 123-4, 124-3,
134-2, 234-1, 12-34, 13-24, 14-23. The reader should check that for n ≥ 1, S(n, k) = 0 if
k > n, S(n, 0) = 0, S(n, 1) = 1, S(n, 2) = 2n−1 − 1, S(n, n) = 1, S(n, n − 1) =

(
n
2

)
, and

∗Discussion of entry 4 begins on page 87.

81

In the rest of this talk we will consider actions on some of the basic
things counted: permutations, injections, and surjections.



Rota’s Twelvefold Way

The Twelvefold Way is a framework for basic combinatorial
counting problems, concevied by G.-C. Rota. It counts
#{f : [n] → [x ]}, where objects may be considered distinct or
indistinct, and the functions arbitrary, injective, or surjective.
Quoting EC1ed2 :[Stan11, § 1.9]

are all equivalence relations, and the number of “different” functions with respect to one of
these equivalences simply means the number of equivalence classes. If f and g are equiva-
lent (in any of the above ways), then f is injective (respectively, surjective) if and only if
g is injective (respectively, surjective). We therefore say that the notions of injectivity and
surjectivity are compatible with the equivalence relation. By the “number of inequivalent
injective functions f : N → X,” we mean the number of equivalence classes all of whose
elements are injective.

We are now ready to present the Twelvefold Way. The twelve entries are numbered and will
be discussed individually. The table gives the number of inequivalent functions f : N → X
of the appropriate type, where #N = n and #X = x.

The Twelvefold Way
Elements

ofN
Elements

ofX
Any f Injective f Surjective f

dist. dist. 1. xn 2. (x)n
3. x!S(n, x)

indist. dist. 4.
((

x
n

))
5.

(
x
n

)
6.

((
x

n−x

))

dist. indist.
7. S(n, 0) + S(n, 1)

+ · · · + S(n, x)

8. 1 if n ≤ x
0 if n > x

9. S(n, x)

indist. indist.
10. p0(n) + p1(n)

+ · · · + px(n)

11. 1 if n ≤ x
0 if n > x

12. px(n)

Discussion of Twelvefold Way Entries

1. For each a ∈ N , f(a) can be any of the x elements of X. Hence there are xn functions.

2. Say N = {a1, . . . , an}. Choose f(a1) in x ways, then f(a2) in x − 1 ways, and so on,
giving x(x− 1) · · · (x− n + 1) = (x)n choices in all.

3.∗ A partition of a finite set N is a collection π = {B1, B2, . . . , Bk} of subsets of N such
that

a. Bi ̸= ∅ for each i

b. Bi ∩ Bj = ∅ if i ̸= j

c. B1 ∪ B2 ∪ · · · ∪ Bk = N .

(Contrast this definition with that of an ordered partition in the proof of Lemma 1.4.11,
for which the subsets B1, . . . , Bk are linearly ordered.) We call Bi a block of π, and we
say that π has k blocks, denoted |π| = k. Define S(n, k) to be the number of partitions of
an n-set into k-blocks. The number S(n, k) is called a Stirling number of the second kind.
(Stirling numbers of the first kind were defined preceding Lemma 1.3.6.) By convention, we
put S(0, 0) = 1. We use notation such as 135-26-4 to denote the partition of [6] with blocks
{1, 3, 5}, {2, 6}, {4}. For instance, S(4, 2) = 7, corresponding to the partitions 123-4, 124-3,
134-2, 234-1, 12-34, 13-24, 14-23. The reader should check that for n ≥ 1, S(n, k) = 0 if
k > n, S(n, 0) = 0, S(n, 1) = 1, S(n, 2) = 2n−1 − 1, S(n, n) = 1, S(n, n − 1) =

(
n
2

)
, and

∗Discussion of entry 4 begins on page 87.

81

In the rest of this talk we will consider actions on some of the basic
things counted: permutations, injections, and surjections.



The Rényi-Foata (Drop Parentheses) Map

Definition

For w ∈ Sn, its canonical (disjoint) cycle decomposition
(CCD) satifies:
(a) each cycle is written with its largest element first; and
(b) the cycles are written in increasing order of largest element.
The map F : Sn → Sn simply removes the parentheses from the
CCD of w and regards the resulting word as a permutation in
one-line notation.

w = 847296513 = (42)(6)(81)(9375) F7→ 426819375 = (2)(951487369),

Note that here w has 4 cycles, and F(w) has 4 records (i.e.,
left-to-right maxima) viz., 4, 6, 8, and 9.

It is easy to see that F is a bijection.



Foatic Actions of Sn

We consider actions Sn of the following form:

Sn
F→ Sn

A→ Sn
F−1

→ Sn
B→ Sn

where A and B are dihedral involutions, defined below.

a C : Sn → Sn, which takes a permutation w = w1 . . .wn to its
complement whose value in position i is n + 1− wi ;

b R : Sn → Sn, which takes a permutation w = w1 . . .wn to its
reversal whose value in position i is wn+1−i ;

c Q2 : Sn → Sn, which takes a permutation w = w1 . . .wn to
its rotation by 180-degrees, whose value in position i is
n + 1− wn+1−i .

d I : Sn → Sn, which takes a permutation w to its inverse
w−1;

e D : Sn → Sn, which takes a permutation w to its its
rotated-inverse Q2(I(w)).

We call such fourfold compositions, where A and B are from the
above list, Foatic.



Foatic example

A = C and B = I gives the Foatic map γ := I ◦F−1 ◦ C ◦F .
If n = 5, then γ[(4213)(5)] = (2)(4)(513) as follows

(4213)(5) F7→ 42135 C7→ 24531 F−1

7→ (2)(4)(531) I7→ (2)(4)(513)

The orbit (of size six) generated by (4213)(5) is

(4213)(5)
γ7→ (2)(4)(513)

γ7→ (412)(53)
γ7→ (2)(5314)

γ7→ (431)(52)
γ7→ (2)(3)(541)

Define the statistic “Fixw” to count the number of fixed points
(equiv. 1-cycles) of w .

Conjecture

The statistic Fix is homomesic with respect to the Foatic
complement-inversion action on Sn.
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Reversal-Inversion

The Foatic action with the nicest orbit structures and properties
appears to be Reversal-Inversion:

φ : Sn
F→ Sn

R→ Sn
F−1

→ Sn
I→ Sn.

φ : Sn
R→ Sn

F−1

→ Sn
I→ Sn.

F→ Sn

w =(2)(43)(51) 7→ 24351 7→ 15342 7→ (1)(5342) 7→ (1)(5243) = φ(w)

(1)(5243) 7→ 15243 7→ 34251 7→ (3)(42)(51) 7→ (3)(42)(51) = φ2(w)

(3)(42)(51) 7→ 34251 7→ 15243 7→ (1)(5243) 7→ (1)(5342) = φ3(w)

(1)(5342) 7→ 15342 7→ 24351 7→ (2)(43)(51) 7→ (2)(43)(51) = φ4(w)

This example also displays (down the second column) the conjugate
orbit of φ, also of size 4.

24351
φ→ 15243

φ→ 34251
φ→ 15342 ↰



Data on Orbit Sizes for Foatic Reversal-Inversion

n 1 2 3 4 5 6 7 8 9 10 11
# of orbits: 1 1 2 5 19 84 448 2884 21196 174160 1598576
LCM of orbit sizes: 1 2 4 8 16 32 64 128 256 512 1024
GCD of orbit sizes: 1 2 2 4 4 4 4 8 8 8 8
Longest orbit size: 1 2 4 8 16 32 64 128 256 512 1024
Shortest orbit size: 1 2 2 4 4 4 4 8 8 8 8
Size of id’s orbit: 1 2 4 8 16 32 64 128 256 512 1024



Heap representation of a permutation

Definition

Recursively define the heap of w ∈ Sn, H(w) as follows: Set
H(∅) = ∅ (the empty word). If w ̸= ∅, let m be the largest element
of w , so w can be written uniquely as umv , where u and v are
partial permutations (possibly empty). Set m to be the root of
H(w), with H(u) its left subtree and H(v) its right subtree.

The heap of a permutation will turn out to be a decreasing binary
tree, (labels decrease along any path from root).

The heap associated with w = 314975826 is shown below.
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Orbits represented as heaps

Two orbits (one for S7, one for S9) of the Foatic reversal-inversion
map φ with associated heaps, with fixed points marked in red. Each
orbit has an average of one fixed point per permutation.
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Reversal-Inversion Results

Theorem (LaCroix-R.)

The orbits of the action of φ (or φ) on Sn, satisfy the following:

1 The size of a φ-orbit O (equivalently φ-orbit) is 2h, where h is
the number of edges in a maximal path from the root (to a
leaf) for any w ∈ O.

2 Let Fixw denote the number of fixed points, i.e., 1-cycles, of
w . Then the statistic Fix is 1-mesic with respect to the action
of φ; (Equivalently, Rasc =#record-ascents is 1-mesic with
respect action of φ.)

3 For fixed i ̸= j in [n], let 1i<j(u) denote the indicator statistic
of whether i occurs to the left of j in the one-line notation of
u. Then 1i<j is

1
2 -mesic with respect to the action of φ.

4 Similarly for fixed i ∈ [n], let 1(i ,n) denote the indicator
statistic of whether i and n lie in the same cycle of w . Then
1(i ,n) is

1
2 -mesic with respect to the action of φ.



Reveral-Inversion Recursion (Key Lemma)

All the results listed above follow without difficulty from the
following key lemma.

Lemma

Let w ∈ Sn have the form AnB (in one-line notation), where A and
B are (possibly empty) partial permutations of n. Then the action
of φ satisfies φ(AnB) = φ(B)nA. Thus, H(φ(AnB)) is the heap
interchanging the left and right subtrees at v , leaving the former
unchanged and applying φ recursively to the latter. In particular,
the action of φ preserves the underlying unlabeled graph of the
corresponding heaps.



Whirling action on injections/surjections

We write functions f ∈ [k][n] in one-line notation f (1)f (2) · · · f (n).
Definition

Let J denote either Inj(n, k) or Sur(n, k) for a given n, k ∈ P.
Define a map whi : J → J , called whirling at index i in the
following way. Given f ∈ J , repeatedly add 1 (mod k) to the value
of f (i) until we get a function in J . The new function is whi (f ).

EG: f = 124 ∈ Inj(3, 6) =⇒ wh1(124) = 324, wh2(124) = 134,
and wh3(124) = 125.

These generalize toggle operations, which are involutions. The
composition wh := whn whn−1 · · ·wh2 wh1 is called whirling.

EG: wh(124) = (324 · · · 354 · · · 356) = 356. 124 generates the
whirling orbit

124 7→ 356 7→ 412 7→ 534 7→ 651 7→ 263 7→ 415 7→ 621 7→ 342 7→ 563



Whirling surjections

EG: Let v = 21444323 ∈ Sur(8, 4). Then wh1(v) = 31444323,
while wh2(v) = v . The orbit generated by v is:

21444323 7→ 31114424 7→ 32211134 7→ 43222141 7→ 13332242 7→ 14433312 ↰

Theorem (Joseph-R.)

Fix J to be either Inj(n, k) or Sur(n, k) for a given n, k ∈ P. For
i ∈ [k], define ηi (f ) = #f −1({i}) to be the number of times i
appears as an output of the function f . Then ηi is

n
k -mesic for any

i ∈ [k].

Equivalently, ηi − ηj is 0-mesic for any i , j ∈ [k], i.e., i and j appear
as outputs of functions the same number of times across any orbit.



Proving homomesy for injections

Key Idea: Partition the orbit into [k]-chunks. If a value j appears in
ith spot, then j + 1 mod k must occur directly below, unless it was
already in the row when wi was applied. Thus, the next j + 1 occurs
no later than the nth letter after j . Color these the same.

124
356
412
534
651
263
415
621
342
563

It’s easy to see this relation goes backwards as
well as forwards, so partitions the orbit into chunks
each containing all of [k]. (The chunks can wrap
around from bottom to top.)



Proving homomesy for surjections

This uses a somewhat different partitioning argument. Since vi and
wh(v)i either agree or differ by one, we could just partition into
vertical chunks, except when vi = wh(v)i (i.e., same values on top
of one another). So it suffices to show that the number of pairs of a
j directly below another j is the same for all j ∈ [k]. The tops of
such pairs are circled below in red.

Finally, one shows that every circled j is followed within the next n
slots by a circled j + 1, allowing these to be partitioned as well.

2 1⃝ 4 4 4⃝ 3 2⃝ 3
3⃝ 1 1 1⃝ 4 4 2 4⃝
3 2 2⃝ 1 1 1⃝ 3 4
4 3⃝ 2 2 2⃝ 1 4⃝ 1
1⃝ 3 3 3⃝ 2 2 4 2⃝
1 4 4⃝ 3 3 3⃝ 1 2



A consequence of homomesy for orbits

From this homomesy we can deduce information about orbit sizes
(that we currently don’t know by any other means).

Let ℓ(O) be the length of the orbit O.

If we consider surjective functions from [7] to [4], then across every
orbit , the numbers 1, 2, 3, 4 all appear as outputs the same
number of times; hence, 4 | 7ℓ(O) =⇒ 4 | ℓ(O).

On the other hand, if we consider surjective functions from [8] to [4],
then across every orbit, 4 | 8ℓ(O), which gives no new information.
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m-injections & m-surjections

A function f : S → T between two sets S and T is m-injective if
#f −1(t) ≤ m for every t ∈ T and m-surjective if #f −1(t) ≥ m
for every t ∈ T . Let Injm(n, k) and Surm(n, k) denote the set of
m-injective (resp. m-surjective) functions from [n] to [k].

Conjecture (Joseph)

Fix J to be either Injm(n, k) or Surm(n, k) for fixed n, k,m ∈ P.
For i ∈ [k], define ηi (f ) = #f −1({i}) to be the number of times i
appears as an output of the function f . Then ηi is

n
k -mesic for any

i ∈ [k].



The final slide of this talk (before the references)

We’re happy to talk about this further with anyone who’s interested.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

Thanks very much for coming to this talk!

http://www.math.uconn.edu/~troby/research.html
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