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Abstract

We consider a variety of combinatorial actions on finite sets, e.g., cyclic
rotation of binary strings, promotion of Young tableaux and rowmotion on
order ideals of partially ordered sets. We identify a particular phenomenon
called “homomesy” appearing in many unrelated combinatorial contexts:
namely that the average value of some natural statistic over each orbit is the
same as the average over the entire set. Viewing these actions as products of
“toggle operations” allows us to see how some of these actions are related and
to extend much of this picture more broadly. In particular, we can generalize
the operations of rowmotion and promotion (in Striker and Williams’
terminology) on order ideals in a poset to (1) the order polytope of a poset
(the continuous piecewise-linear category), and (2) to the collection of maps
from a poset P to rational functions in |P| variables (the birational category).

For this latter category, we have developed Sage code that (1) computes the
rowmotion operator; (2) checks whether this operator appears to have finite
order; (3) helps check for homomesy of particular statistics under the action of
the operator. Although we have proofs of homomesy for a number of special
cases, much remains to be done even at the combinatorial level of order ideals
on posets. For the two other categories most of what we have discovered via
computations is still conjectural.
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Overview

Rotation of bit-strings;

Unexpected averaging properties: homomesic statistics;

Suter’s dihedral symmetries in Young’s lattice;

Rowmotion and Promotion actions on antichains and order
ideals of posets;

Homomesic statistics for actions in [a]× [b];

Generalizing to other actions on order polytopes and rational
functions;

Demonstration of Sage code; and

Wish list for Sage implementation.

Please interrupt with questions!



Example 1: Rotation of bit-strings

Let S denote the set of length n binary strings with exactly k 1’s.
and set τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1
(cyclic shift). Let ϕ(b) = #inversions(b) = #{i < j : bi > bj}.
Then over any τ -orbit O we have:

1

#O
∑
s∈O

ϕ(s) =
k(n − k)

2
=

1

#S

∑
s∈S

ϕ(s).

EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 1010
1100 0101
0110
0011
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EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 7→ 2 1010 7→ 3
1100 7→ 4 0101 7→ 1
0110 7→ 2 AVG = 4

2 = 2
0011 7→ 0

AVG = 8
4 = 2



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101
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More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1
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011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1

AVG = 24
6 = 4 AVG = 24

6 = 4 AVG = 12
3 = 4

We know two simple ways to prove this: one can show pictorially
that the value of the sum doesn’t change when you mutate b
(replacing a 01 somewhere in b by 10 or vice versa), or one can
write the number of inversions in b as

∑
i<j bi (1− bj) and then

perform algebraic manipulations.



Main definition: Homomesic

MAIN DEF: Given an (invertible) action τ on a finite set of
objects S , call a statistic ϕ : S → C homomesic with respect to
(S , τ) iff the average of ϕ over each τ -orbit O is the same for all

O, i.e.,
1

#O
∑
s∈O

ϕ(s) does not depend on the choice of O.

Equivalently: the average of ϕ over each τ -orbit O is the same as
the average over the entire set S :

1

#O
∑
s∈O

ϕ(s) =
1

#S

∑
s∈S

ϕ(s).

So in looking for homomesic statistics we can compute what the
average should be before checking whether a statistic is
homomesic.
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Semi-Standard Young Tableaux

Fix a positive integer N. A semi-standard Young tableau
(SSYT) of shape λ and ceiling N is a labeling of the cells of the
Young diagram of a partition λ with numbers from 1, 2, . . . ,N
which increases weakly along each row and strictly along each
column. For example,

1 1 2 4

2 3 4

4 4 ,

1 1 1 2 2 5

4 4 4 5

5 5 6 but not

1 1 2 2 3 3

2 3 4 4

3 4 4

The weight vector α(T ) = (α1, α2, . . . , αN) is given by
αi := αi (T ) = #occurrences of i in T . EG, the weight vectors for
the two tableaux above are (2, 2, 1, 4) and (3, 2, 0, 3, 4, 1).

We let SSYT (λ,N) denote the set of all semi-standard Young
tableaux whose entries lie within [N] = {1, 2, . . .N}.



Bender-Knuth involutions

A standard method for proving combinatorially that Schur
functions are symmetric is to use Bender-Knuth involutions.
Given T ∈ SSYT (λ,N) and i ∈ [N − 1], consider all the i ’s that
appear above an i + 1 in the same column, and all the i + 1’s that
appear below an i in the same column to be married and the
remainder free. Then in each row with r free i ’s and s free i + 1’s,
βi replaces these with s free i ’s and r free i + 1’s.

i
i i i i︸︷︷︸ i + 1 i + 1 i + 1 i + 1︸ ︷︷ ︸ i + 1

i + 1 i + 1 r=2 s=4

i
7→ i i i i i i︸ ︷︷ ︸ i + 1 i + 1︸ ︷︷ ︸ i + 1

i + 1 i + 1 s=4 r=2



Promotion of SSYT via Bender-Knuth involutions

Define the following operator on SSYT (λ,N):

∂ := βN−1 ◦ βN−2 ◦ · · · ◦ β2 ◦ β1 ,

the composition of all BK involutions in order. By a result of
Gansner [Gan80], this operator coincides with Schützenberger’s
promotion operator. Then for all i ∈ [N], the weight vector
coordinate αi (T ) is homomesic w.r.t. ∂ acting on SSYT (λ,N).

EG: Let N = 5 and T =
1 1 1 2 2 3 3 3 4
2 2 3 3 4 4 5
3 4 4 5

Then the content vectors α = [α1, α2, . . . , αN ] that arise as we
successively apply βi ’s behave as follows, starting from [3, 4, 6, 5, 2]:

[4, 3, 6, 5, 2] [6, 4, 5, 2, 3] [5, 6, 2, 3, 4] [2, 5, 3, 4, 6] [3, 2, 4, 6, 5]
[4, 6, 3, 5, 2] [6, 5, 4, 2, 3] [5, 2, 6, 3, 4] [2, 3, 5, 4, 6] [3, 4, 2, 6, 5]
[4, 6, 5, 3, 2] [6, 5, 2, 4, 3] [5, 2, 3, 6, 4] [2, 3, 4, 5, 6] [3, 4, 6, 2, 5]
[4, 6, 5, 2, 3] [6, 5, 2, 3, 4] [5, 2, 3, 4, 6] [2, 3, 4, 6, 5] [3, 4, 6, 5, 2]
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An easy homomesy for Promotion

From previous slide: The content vectors α = [α1, α2, . . . , αN ]
that arise as we successively apply βi ’s behave as follows (working
down columns), starting from [3, 4, 6, 5, 2]:

[4, 3, 6, 5, 2] [6, 4, 5, 2, 3] [5, 6, 2, 3, 4] [2, 5, 3, 4, 6] [3, 2, 4, 6, 5]
[4, 6, 3, 5, 2] [6, 5, 4, 2, 3] [5, 2, 6, 3, 4] [2, 3, 5, 4, 6] [3, 4, 2, 6, 5]
[4, 6, 5, 3, 2] [6, 5, 2, 4, 3] [5, 2, 3, 6, 4] [2, 3, 4, 5, 6] [3, 4, 6, 2, 5]
[4, 6, 5, 2, 3] [6, 5, 2, 3, 4] [5, 2, 3, 4, 6] [2, 3, 4, 6, 5] [3, 4, 6, 5, 2]

Note that each iteration of promotion (going down each full
column) applies a cyclic shift of the content vector. This is enough
to prove that αi (T ) is homomesic, even though we don’t know
how long the orbit is. But it must be a multiple of 5 for the
content vector to return to where it started. So over any orbit,
each content value visits each position equally often.

However, we conjecture more interesting homomesies which we are
about to test more thoroughly using Sage.
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A small example of promotion

(taken from J. Striker and N. Williams, Promotion and
Rowmotion, European J. Combin. 33 (2012), no. 8, 1919–1942;
http://arxiv.org/abs/1108.1172):

http://arxiv.org/abs/1108.1172


A small example of promotion: centrally symmetric sums



Promotion of Semi-Standard Young Tableaux: homomesies

Conjecture

Let S be the set of Semi-Standard Young Tableaux of rectangular
shape λ and ceiling N. If c and c ′ are opposite cells, i.e., c and c ′

are related by 180-degree rotation about the center (note: the case
c = c ′ is permitted when λ is odd-by-odd), and ϕ(T ) denotes the
sum of the numbers in cells c and c ′, then ϕ is homomesic with
respect to (S , ∂) with average value N + 1.

Rectangular shapes are one of the few shapes where the order of
promotion on the set of SYT is small, i.e., n or 2n. Striker &
Williams note that the order of promotion on SYT of shape (8, 6)
is 7,554,844,752.
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Basics of partially ordered sets

A partially ordered set (or poset) is a set P with a binary relation
≤ that satisfies the following properties for every a, b, c ∈ P:
(a) reflexive (a ≤ a),
(b) antisymmetric (a ≤ b and b ≤ a =⇒ a = b), and
(c) transitive (a ≤ b and b ≤ c =⇒ a ≤ c). All our posets will be
finite and can be represented by directed graphs of minimal
covering relations, as I’ll draw on the board.

An antichain A ⊆ P is any set of unrelated elements. The
collection of all antichains is denoted A(P).

An order ideal or down-set I ⊆ P is any set with the property
that z ∈ I and x ≤ z in P =⇒ x ∈ I . The collection of all order
ideals is denoted J(P).

There is an easy bijection between A(P) and J(P), given by taking
A ∈ A(P) to the order ideal generated by A, and conversely taking
I ∈ J(P) to the maximal elements of I .
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Rowmotion: an invertible operation on antichains

Given A ∈ A(P), let τ(A) be the set of minimal elements of the
complement of the order ideal generated by A.
τ is invertible since it is a composition of three invertible
operations:

antichains←→ down-sets←→ up-sets←→ antichains

We can also view this as an invertible action τ on J(P), the set of
order ideals of P, via the above isomorphism between A(P) and
J(P); in other words, perform the above steps in the order 2,3,1.

This map and its inverse have been considered with varying
degrees of generality, by many people more or less independently
(using a variety of nomenclatures and notations): Duchet, Brouwer
and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev,
Rush and Shi, and Striker and Williams [SW12]. Following
[SW12], we call this rowmotion.



An example

1. Saturate downward

2. Complement

3. Take minimal element(s)

1−→ 2−→ 3−→

1



Example in lattice cell form

Viewing the elements of the poset as squares, we would map:

Area = 8

X X

τ−→
τ−→

Area = 10

X

X X



Panyushev’s conjecture

Let ∆ be a reduced irreducible root system in Rn. (Picture coming
soon!)
Choose a system of positive roots and make it a poset of rank n by
decreeing that y covers x iff y − x is a simple root.
Conjecture (Conjecture 2.1(iii) in D.I. Panyushev, On orbits of
antichains of positive roots, European J. Combin. 30 (2009),
586-594): Let O be an arbitrary τ -orbit. Then

1

#O
∑
A∈O

#A =
n

2
.

In our language, the cardinality statistic is homomesic with respect
to the action of rowmotion on antichains in root posets.

Panyushev’s Conjecture 2.1(iii) (along with much else) was proved
by Armstrong, Stump, and Thomas in their article A uniform
bijection between nonnesting and noncrossing partitions,
http://arxiv.org/abs/1101.1277.

http://arxiv.org/abs/1101.1277


Picture of root posets

Here are the classes of posets included in Panyushev’s conjecture.

(Graphic courtesy of Striker-Williams.)



Panyushev’s conjecture: The An case, n = 2

Here we have just an orbit of size 2 and an orbit of size 3:

0 2 1

1 1

1

Within each orbit, the average antichain has cardinality n/2 = 1.



The case A3.

Here’s an example orbit taken from [AST] for the A3 root poset:

For A3 this action has three orbits (sized 2, 4, and 8), and the
average cardinality of an antichain is

1

8
(2 + 1 + 1 + 2 + 2 + 1 + 1 + 2) =

3

2
=

n

2



Antichains in [a]× [b]: cardinality is homomesic

A simpler-to-prove phenomenon of this kind concerns the poset
[a]× [b] (where [k] denotes the linear ordering of {1, 2, . . . , k}):

Theorem (Propp, R.)

Let O be an arbitrary τ -orbit in A([a]× [b]). Then

1

#O
∑
A∈O

#A =
ab

a + b
.

This is an easy consequence of unpublished work of Hugh Thomas
building on earlier work of Richard Stanley: see the last paragraph
of section 2 of R. Stanley, Promotion and evacuation,
http://www.combinatorics.org/ojs/index.php/eljc/

article/view/v16i2r9 .

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r9
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r9


Antichains in [a]× [b]: the case a = b = 2

Here we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average antichain has cardinality
ab/(a + b) = 1.

0 1 2 1

1 1

1



Antichains in [a]× [b]: fiber-cardinality is homomesic

0 0 0 1 1 1 1 0

1 0 0 1

1

Within each orbit, the average antichain has
1/2 a green element and 1/2 a blue element.



Antichains in [a]× [b]: fiber-cardinality is homomesic

For (i , j) ∈ [a]× [b], and A an antichain in [a]× [b], let 1i ,j(A) be
1 or 0 according to whether or not A contains (i , j).

Also, let fi (A) =
∑

j∈[b] 1i ,j(A) ∈ {0, 1} (the cardinality of the
intersection of A with the fiber {(i , 1), (i , 2), . . . , (i , b)} in
[a]× [b]), so that #A =

∑
i fi (A).

Likewise let gj(A) =
∑

i∈[a] 1i ,j(A), so that #A =
∑

j gj(A).

Theorem (Propp, R.)

For all i , j ,

1

#O
∑
A∈O

fi (A) =
b

a + b
and

1

#O
∑
A∈O

gj(A) =
a

a + b
.

The indicator functions fi and gj are homomesic under τ , even
though the indicator functions 1i ,j aren’t.



Antichains in [a]× [b]: centrally symmetric homomesies

Theorem (Propp, R.)

In any orbit, the number of A that contain (i , j) equals the number
of A that contain the opposite element
(i ′, j ′) = (a + 1− i , b + 1− j).

That is, the function 1i ,j − 1i ′,j ′ is homomesic under τ , with
average value 0 in each orbit.



Linearity

Useful triviality: every linear combination of homomesies is itself
homomesic.

E.g., consider the adjusted major index statistic defined by
amaj(A) =

∑
(i ,j)∈A(i − j).

Propp and R. proved that amaj is homomesic under τ
by writing it as a linear combination of the functions 1i ,j − 1i ′,j ′ .
Haddadan gave a simpler proof,
writing amaj as a linear combination of the functions fi and gj .

Question: Are there other homomesic combinations of the
indicator functions 1i ,j (with (i , j) ∈ [a]× [b]),
linearly independent of the functions fi , gj , and 1i ,j − 1i ′,j ′?



Ideals in [a]× [b]: cardinality is homomesic

As we’ve seen, one can view rowmotion as acting either on
antichains (A(P)) or on order ideals (J(P)); we denote the latter
map τ . It turns out that the cardinality of the order ideal is also
homomesic with respect to rowmotion on [a]× [b].

Theorem (Propp, R.)

Let O be an arbitrary τ -orbit in J([a]× [b]). Then

1

#O
∑
I∈O

#I =
ab

2
.

It’s worth noting even though there’s a strong connection between
the rowmotion map on antichains and on order ideals, that the
homomesy situation could be quite different.



One action, two vector spaces

The map τ is “the same” as τ in the sense that the standard
bijection from A(P) to J(P) (downward saturation) makes the
following diagram commute:

A(P)
τ−→ A(P)

↓ ↓
J(P)

τ−→ J(P)

However, the bijection from A(P) to J(P) does not carry the
vector space generated by the functions 1i ,j to the vector space
generated by the functions 1i ,j in a linear way.

So the homomesy situation for τ : J(P)→ J(P) could be
(and, as we’ll see, is) different from the homomesy situation for
τ : A(P)→ A(P).



Rowmotion on [4]× [2] A



Rowmotion on [4]× [2] A

1

Area = 0

2

Area = 1

3

Area = 3

4

Area = 5

5

Area = 7

6

Area = 8

(0+1+3+5+7+8) / 6 = 4



Rowmotion on [4]× [2] B



Rowmotion on [4]× [2] B

1

Area = 2

2

Area = 4

3

Area = 6

4

Area = 6

5

Area = 4

6

Area = 2

(2+4+6+6+4+2) / 6 = 4



Rowmotion on [4]× [2] C



Rowmotion on [4]× [2] C

1

Area = 3

2

Area = 5

3

Area = 4

4

Area = 3

5

Area = 5

6

Area = 4

(3+5+4+3+5+4) / 6 = 4



Ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average order ideal has cardinality ab/2 = 2.

0 1 3 4

2 2

1



Ideals in [a]× [b]: file-cardinality is homomesic

We also have homomesies for more refined statistics than #I .

0 0 0 0 1 0 1 1 1 1 2 1

1 1 0 0 1 1

1

Within each orbit, the average order ideal has
1/2 a violet element, 1 red element, and 1/2 a brown element.



Ideals in [a]× [b]: file-cardinality is homomesic

For 1− b ≤ k ≤ a− 1, define the kth file of [a]× [b] as

{(i , j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, i − j = k}.

For 1− b ≤ k ≤ a− 1, let hk(I ) be the number of elements of I in
the kth file of [a]× [b], so that #I =

∑
k hk(I ).

Theorem (Propp, R.)

For every τ -orbit O in J([a]× [b]),

1

#O
∑
I∈O

hk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.



Ideals in [a]× [b]: centrally symmetric homomesies

Given (i , j) ∈ [a]× [b], and I an ideal in [a]× [b], define the
indicator function 1i ,j(I ) to be 1 or 0 according to whether or not I
contains (i , j).

Write (i ′, j ′) = (a + 1− i , b + 1− j), the point opposite (i , j) in the
poset.

Theorem (Propp, R.)

1i ,j + 1i ′,j ′ is homomesic under τ .



The two vector spaces, compared

In the space associated with antichains:
fiber-cardinalities and
centrally symmetric differences

are homomesic.

In the space associated with order ideals:
file-cardinalities and
centrally symmetric sums

are homomesic.

Note that the the discovery of these homomesies was driven by
calculation, and the project of generalizing these results to other
posets will clearly be aided by computer-assisted search. Some
work has already been done along these lines in a different
computer algebra package. . .



The two vector spaces, compared

In the space associated with antichains:
fiber-cardinalities and
centrally symmetric differences

are homomesic.

In the space associated with order ideals:
file-cardinalities and
centrally symmetric sums

are homomesic.

Note that the the discovery of these homomesies was driven by
calculation, and the project of generalizing these results to other
posets will clearly be aided by computer-assisted search. Some
work has already been done along these lines in a different
computer algebra package. . .



Toggling

In their 1995 article Orbits of antichains revisited , European J.
Combin. 16 (1995), 545–554, Cameron and Fon-der-Flaass give an
alternative description of τ .

Given I ∈ J(P) and x ∈ P, let τx(I ) = I4{x} (symmetric
difference) provided that I4{x} is an order ideal of P; otherwise,
let τx(I ) = I .

We call the involution τx “toggling at x”.

The involutions τx and τy commute unless x covers y or y covers x .



An example

1. Toggle the top element

2. Toggle the left element

3. Toggle the right element

4. Toggle the bottom element

1−→ 2−→ 3−→ 4−→

1



Toggling from top to bottom

Theorem ([CF95])

Let x1, x2, . . . , xn be any order-preserving enumeration of the
elements of the poset P. Then the action on J(P) given by the
composition τx1 ◦ τx2 ◦ · · · ◦ τxn coincides with the action of τ .

In the particular case P = [a]× [b], we can enumerate P
rank-by-rank; that is, we can list the (i , j)’s in order of increasing
i + j .

Note that all the involutions coming from a given rank of P
commute with one another, since no two of them are in a covering
relation.

Striker and Williams refer to τ (and τ) as rowmotion, since for
them, “row” means “rank”.



Toggling from side to side

Recall that a file in P = [a]× [b] is the set of all (i , j) ∈ P with
i − j equal to some fixed value k .

Note that all the involutions coming from a given file commute
with one another, since no two of them are in a covering relation.

It follows that for any enumeration x1, x2, . . . , xn of the elements of
the poset [a]× [b] arranged in order of increasing i − j , the action
on J(P) given by τx1 ◦ τx2 ◦ · · · ◦ τxn doesn’t depend on which
enumeration was used.

Striker and Williams call this well-defined composition promotion,
and denote it by ∂, since for two-rowed tableaux it can be related
to Schützenberger’s promotion on SYT, described earlier.



Promoting ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

0 2 4 2

1 3

1



J([a]× [b]): cardinality is homomesic under promotion

Theorem (Propp, R.)

Let O be an arbitrary orbit in J([a]× [b]) under the action of
promotion ∂. Then

1

#O
∑
I∈O

#I =
ab

2
.

The result about cyclic rotation of binary words discussed earlier
turns out to be a special case of this.



J([a]× [b]): file-cardinality is homomesic under promotion

For 1− b ≤ k ≤ a− 1, let fk(I ) be the number of elements of I in
the kth file of [a]× [b], so that #I =

∑
k fk(I ).

Theorem

If O is any ∂-orbit in J([a]× [b]),

1

#O
∑
I∈O

fk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.



A([a]× [b]) under promotion

Cardinality of antichains is not homomesic under promotion.
although the antipodal functions 1i ,j − 1i ′,j ′ are.



Root posets of type A: antichains

Recall that, by the Armstrong-Stump-Thomas theorem, the
cardinality of antichains is homomesic under the action of
rowmotion, where the poset P is a root poset of type An.
E.g., for n = 2:

Antichain-cardinality is homomesic: in each orbit, its average is 1.

0 2 1

1 1

1



Root posets of type A: order ideals

What if instead of antichains we take order ideals?

E.g., n = 2:

What is homomesic here?

1



Root posets of type A: rank-signed cardinality

0 2 1

1 1

+ + + +

+ +

−

1



Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan)

Let P be the root poset of type An. If we assign an element x ∈ P

weight wt(x) = (−1)rank(x), and assign an order ideal I ∈ J(P)
weight ϕ(I ) =

∑
x∈I wt(x), then ϕ is homomesic under rowmotion

and promotion, with average n/2.



The order polytope of a poset

Let P be a poset, with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y)
whenever x ≤P y .
We can generalize our entire setup of toggle operators and
“rowmotion” to operate on these functions (the “continuous
piecewise-linear (CPL) category”).



Flipping-maps in the order polytope

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Note that the interval [minz ·>x f (z),maxw<· x f (w)] is precisely
the set of values that f ′(x) could have so as to satisfy the
order-preserving condition, if f ′(y) = f (y) for all y 6= x ;
the map that sends f (x) to minz ·>x f (z) + maxw<· x f (w)− f (x)
is just the affine involution that swaps the endpoints.



Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z ·>x

f (z) + max
w<· x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9



Flipping and toggling

If we associate each order-ideal I with the indicator function f of
P \ I (that is, the function that takes the value 0 on I and the
value 1 everywhere else), then toggling I at x is tantamount to
flipping f at x .

That is, we can identify J(P) with the vertices of the polytope
O(P) in such a way that toggling can be seen to be a special case
of flipping.

This may be clearer if you think of J(P) as being in bijection with
the set of monotone 0,1-valued functions on P.



Flipping

Flipping (at least in special cases) is not new, though it is not
well-studied; the most worked-out example we’ve seen is
Berenstein and Kirillov’s article Groups generated by involutions,
Gelfand-Tsetlin patterns and combinatorics of Young tableaux (St.
Petersburg Math. J. 7 (1996), 77–127); see
http://pages.uoregon.edu/arkadiy/bk1.pdf.

http://pages.uoregon.edu/arkadiy/bk1.pdf


Composing flips

Just as we can apply toggle-maps from top to bottom, we can
apply flip-maps from top to bottom (successively at the North,
West, East, and South.) :

.8

8888 .6

8888 .6

8888

.4

����
.3

����

σN

→ .4

����
.3

����

σW

→ .3

����
.3

����

.1

8888

.1

8888

.1

8888

.6

8888 .6

8888

σE

→ .3

����
.4

����

σS

→ .3

����
.4

����

.1

8888

.2

8888



Two Examples of CPL rowmotion orbits

.8
>>> .6

>>> .8
>>> .9

>>>

τ

vv

.4

���
.3

���
τ→ .3

���
.4

���
τ→ .7

���
.6

���
τ→ .6

���
.7

���

.1

>>>

.2

>>>

.4

>>>

.2

>>>

1
::: 1

::: 1
::: 1

:::

τ

ww

1

���
0

���
τ→ 0

���
1

���
τ→ 1

���
0

���
τ→ 0

���
1

���

0

:::

0

:::

0

:::

0

:::

The average at each
node across the
respective orbits is shown
at right, along with the
file sums.

.8 AA 1 CC

.5
}}

.5
}}

0.5
{{

0.5
{{

.2

AA

0

CC

.5 1 .5 0.5 1 0.5



Conjectures in the CPL category

It appears that all of the aforementioned results on homomesy for
rowmotion and promotion on J([a]× [b]) lift to corresponding
results in the order polytope, where instead of composing
toggle-maps to obtain rowmotion and promotion we compose the
corresponding flip-maps to obtain continuous piecewise-linear maps
from O([a]× [b]) to itself.

News Flash: By lifting an argument from Propp-R. in the
combinatorial category, Propp has very recently shown that
promotion, and hence rowmotion, must be homomesic (in a
slightly generalized sense). But we still don’t have a proof that
these maps have finite order.



Order of flipping affects order of the composition!

In the combinatorial category, where A(P) and J(P) are finite, it’s
clear that any map defined as a product of toggles has finite order.
But we can no longer take this for granted in the CPL category.
Let P = [2]× [2]. As we’ll soon see, one can show by brute force
that the CPL maps
σ(1,1) ◦ σ(1,2) ◦ σ(2,1) ◦ σ(2,2) (“lifted rowmotion”) and
σ(2,1) ◦ σ(1,1) ◦ σ(2,2) ◦ σ(1,2) (“lifted promotion”) are of order 4.
However, not every composition of flips has finite order.

Proposition (Einstein)

The map σ(1,1) ◦ σ(1,2) ◦ σ(2,2) ◦ σ(2,1) (flipping values in clockwise
order, as opposed to going by rows or columns of P) is of infinite
order.



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary
ring operations (+, ·) with the tropical operations (max,+). In the
continuous piecewise-linear (CPL) category of the order polytope
studied above, our flipping-map at x replaced the value of a
function f : P → [0, 1] at a point x ∈ P with f ′, where

f ′(x) := min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

We can“detropicalize” this flip map and apply it to an assignment

f : P → R(ξ1, ξ2, . . . ) of rational functions to the nodes of the
poset (using that min

i
(zi ) = −max

i
(−zi )) to get

f ′(x) =

∑
w<· x f (w)

f (x)
∑

z ·>x
1

f (z)



Example of birational rowmotion

In our running example, P = [2]× [2], applying these new flip
operators from top to bottom creates a new rowmotion operator.
(Here we assign f (0̂) = f (1̂) = 1.)

z x+y
z

x+y
z

x y 7→ x y 7→ w(x+y)
xz y 7→

w w w

x+y
z

x+y
z

w(x+y)
xz

w(x+y)
yz 7→ w(x+y)

xz
w(x+y)

yz

w 1
z



Example of birational rowmotion orbit

Here’s an orbit of rowmotion in this category:

z x+y
z

w(x+y)
xy

x y 7→ w(x+y)
xz

w(x+y)
yz 7→ 1

y
1
x 7→

w 1
z

z
x+y

1
w z

yz
w(x+y)

xz
w(x+y) 7→ x y

xy
w(x+y) w



Geometric Homomesy

In this category, geometric means replace arithmetic means, so
let’s compute the product of the function values at each node.

z x+y
z

w(x+y)
xy

x y 7→ w(x+y)
xz

w(x+y)
yz 7→ 1

y
1
x 7→

w 1
z

z
x+y

1
w

(x+y)2

xy
yz

w(x+y)
xz

w(x+y) PROD = 1 1
xy

w(x+y)
xy

(x+y)2



Geometric homomesy with boundary variables

If we instead generically assign variables f (0̂) = α and f (1̂) = ω:

ω

z (x+y)ω
z

w(x+y)ω
xy

x y 7→ w(x+y)ω
xz

w(x+y)ω
yz 7→ αω

y
αω
x

w αω
z

αz
x+y

α

αω
w αω3 (x+y)2

xy
αyz

w(x+y)
αxz

w(x+y) PROD = α2ω2 α2ω2

αxy
w(x+y) α3ω xy

(x+y)2

So the statistic “multiply opposite nodes” has geometric mean αω
across the orbit.



For what posets does this work?

It’s not hard to see that if a map such as rowmotion is homomesic
with respect to some statistics in the birational category, then this
implies homomesy at the CPL level, which in turn implies it in the
combinatorial category.

We believe that multiplicative versions of homomesy in the
birational category holds for a large class of posets, often ones that
come up in representation theory. There are also simple examples
of posets, e.g., the Boolean algebra B3 for which nothing we have
tried appears to hold. For example, it appears (conjecturally) that
birational rowmotion has infinite order on B3.



Sage implementation & Wish List

Broader Goals:

A way to define an action τ on a finite set S of n objects and
have Sage give the permutation π ∈ Sn that it represents in
various forms (1-line notation, cycle notation).

Tools to compute arithmetic and multiplicative averages of
statistics defined on S in the above category.

Specific actions to implement

Bender-Knuth involutions for SSYT: Done and merged by
Travis Scrimshaw & DG.

promotion of SSYT: Ticket #7983 needs to be reviewed.

Suter dihedral map on Young’s Lattice: Ticket #14763
needs to be reviewed.

toggles & rowmotion in a general poset: Need to discuss
implementation of I ∈ J(P): what data type would work?
Can Yan Zhang’s code be put on the Trac server?



More wishlist

birational rowmotion in a general poset: Some code has
been written DG, but probably still not in shareable form.

promotion in an arbitrary RC poset? Need input from
others on how to implement RC posets. Probably DG and
Jessica Striker (and anyone else interested) should discuss.

Unordered trees: It appears that trees currently implemented
in Sage are planar/ordered? We need unordered as well.

Semi-fields: The CPL case is just the birational case over the
tropical semiring. As a stopgap measure, we could use the
recently implemented Tropical Semiring and pretend it’s a
field, since Python won’t bother to check types.



Conclusion

A recently identified phenomenon called homomesy appears to
be lurking in a wide range of combinatorial situations.

We are just beginning to develop tools for studying this, so
there are many interesting open problems.

There are intriguing conjectured generalizations to continuous
piecewise-linear maps on order polytopes and to birational
maps on {f : P → R(ξ1, ξ2, . . . )}.
Useful programs exist in Sage for doing computations, and
more are currently under development. . .
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The last slide of this talk

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

For more information, see:

http://jamespropp.org/ucbcomb12.pdf

http://jamespropp.org/mathfest12a.pdf

http://www.math.uconn.edu/∼troby/combErg2012kizugawa.pdf
http://jamespropp.org/mitcomb13a.pdf

http://www.math.uconn.edu/~troby/ceFPSAC.pdf

Thanks for your attention!

http://www.math.uconn.edu/~troby/research.html
http://jamespropp.org/ucbcomb12.pdf
http://jamespropp.org/mathfest12a.pdf
http://www.math.uconn.edu/~troby/combErg2012kizugawa.pdf
http://jamespropp.org/mitcomb13a.pdf
http://www.math.uconn.edu/~troby/ceFPSAC.pdf
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