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Abstract

Abstract

We consider a variety of combinatorial actions on finite sets
which have interesting unexpected properties. Starting with
simple examples such as cyclic rotation of binary strings, we
generalize to actions on Young tableaux and order ideals of
other partially ordered sets. We identify a particular
phenomenon called “homomesy” appearing in many unrelated
combinatorial contexts: namely that the average value of some
natural statistic over each orbit is the same as the average over
the entire set. Viewing these actions as products of “toggle
operations” allows us to see how some of these actions are
related and to extend much of this picture more broadly to
interesting non-combinatorial actions, such as a
piecewise-linear action on the order polytope of a poset.
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Overview

Interesting actions on subsets: rotation and winching;

Unexpected averaging properties;

Actions on antichains and order ideals in posets; and

Generalizing to other categories.

Please interrupt with questions!



Subset Rotation

Set [n] := {1, 2, . . . n}.(
[n]
k

)
= {k-element subsets of [n]}.

For example,
([7]
3

)
consists of 35 subsets (dropping braces &

commas): 123, 124, 125, 126, 127, 134, 135, 136, 137, 145, 146,
147, 156, 157, 167, 234,. . .

Consider the operation that adds 1 to each element mod n.

156 7→ 267 7→ 137 7→ 124 7→ 235 7→ 346 7→ 457 7→ 156

It’s easy to see that the cardinality of each orbit of this action is a
divisor of n.



Winching

Winching is an action on
(
[n]
k

)
= {k-element subsets of [n]}

designed by Propp and named by Winkler. The rules are:
Act on each element k ∈ S from Left to
Right, increment k if the result is still a legitimate
subset, otherwise, allow k to fall back until it
runs up against the element below. More formally:

IF

k + 1 6∈ S ∪ {n + 1}, replace k by k + 1 in S;

ELSE k 7→ 1 + max {{0} ∪ {i ∈ S , i < k}}.

134 7→ 235 7→ 146 7→ 257 7→ 367 7→ 456 7→ 127 7→ 134

Q: Is it obvious we return to where we started?

Q: Well, is the action invertible?
A: Yes! But why?
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Invertibility of Winching

We can think of winching as being a composition of cyclic
operators: namely “winching at a location”, where we increase a
number within the (open) interval of its surrounding values if
possible, falling back to the lowest value if not, e.g., winching at
location 2 cycles among subsets of the form 1, a, 5 as follows

1, 2, 5 7→ 1, 3, 5 7→ 1, 4, 5 7→ 1, 2, 5

In particular, since these operators are invertible, so is the
composition.

Q: Why should the order of winching be the same as that for cyclic
rotation?
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Winching Right to Left

What if we winch from right to left with regular gravity (so a
number which cannot increment still fall back to the left)?

156 7→ 267 7→ 137 7→ 124 7→ 235 7→ 346 7→ 457 7→ 156

Q: Does this look familiar?

A: It’s the same as earlier subset rotation mod n.

When S avoids n = 7, winching R to L is cyclic rotation, since no
element runs into an obstacle moving to the right. On the other
hand, if n ∈ S = {a1, a2, . . . , ak−1, n}, then n falls back to
ak−1 + 1, ak−1 falls back to ak−2 + 1,. . . , and finally a1 falls back
to 1, which also gives the same result as cyclic rotation.
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Order of LR winching

It turns out that winching from left to right is also an operation of

order n on
(
[n]
k

)
, which is certainly not obvious from the definition.

Proving this involves a bit more work.



Unexpected Orbit Averages

Certain statistics on these subsets exhibit an unexpected property:
the sum of the first and last elements, or generally of the ith and
k + 1− ith elements, give the same average along each orbit.

u1u2u3 u1 + u3 v1v2v3v4 v1 + v4 v2 + v3
134 5 1347 8 7
235 7 2356 8 8
146 7 1457 8 9
257 9 2367 9 9
367 10 1456 7 9
456 10 2347 9 7
127 8 1256 7 7

AVG= 8 AVG= 8 8

In each case the average sums are 8 = n + 1.



Unexpected Orbit Averages: Why?

Sketch of Proof (Haddadan): Within each table, the numbers from
1 to n can be grouped into snakes moving right or (cylindrically)
down. It’s not hard to see that each segment (restriction of a
snake to column i) is balanced by a segment with complementary
values in column k + 1− i .

u1u2u3 u1 + u3 v1v2v3v4 v1 + v4 v2 + v3
134 5 1347 8 7
235 7 2356 8 8
146 7 1457 8 9
257 9 2367 9 9
367 10 1456 7 9
456 10 2347 9 7
127 8 1256 7 7

AVG= 8 AVG= 8 8



Winching on all subsets

With a small modification, we can define a winching action W
that acts on all of 2[n]. Represent S = {x1 < x2 < · · · < xk} ⊆ [n]
by the n-tuple (padding with n − k initial zeroes):

00 · · · 0x1x2 · · · xk

We still increment each component from L to R when possible,
otherwise fall back as far as possible, including to 0 (even if there
are other zeroes).
EG, if n = 5, S = {2, 3, 5}, then the orbit begins:

00235 7→ 01245 7→ 00345 7→ 01234 7→ 00005 7→ 00012 7→ · · ·

Q: What happens if we start with 00034?
A: Get cycle of length 2: 00035 7→ 00125.
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Orbit averages for winching on 2[n]

Here’s how the 25 subsets fall into orbits under power-set winching.

00014 00000 00004 00034
00025 00001 00015 00125
00134 00002 00023
00235 00013 00124
01245 00024 00035
00345 00135 00145
01234 00245 00234
00005 01345 01235
00012 02345 00045
00003 12345 00123

Prop (Haddadan): Each k ∈ [n] occurs in exactly half the strings
in each orbit.

Exercise: Use Shahrzad’s snakes to prove this.
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Rotation of bit-strings

We find another unexpected structure in the orbits if we consider

S =
(
[n]
k

)
, as length n binary strings with k 1’s as we cyclically

shift them. τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1,

and count ϕ(b) = #inversions(b) = #{i < j : bi > bj}.

EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 1010
1100 0101
0110
0011
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Rotation of bit-strings

We find another unexpected structure in the orbits if we consider
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(
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k

)
, as length n binary strings with k 1’s as we cyclically

shift them. τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1,

and count ϕ(b) = #inversions(b) = #{i < j : bi > bj}.
EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 7→ 2 1010 7→ 3
1100 7→ 4 0101 7→ 1
0110 7→ 2 AVG = 4

2 = 2
0011 7→ 0

AVG= 8
4 = 2



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1

AVG= 24
6 = 4 AVG= 24

6 = 4 AVG= 12
3 = 4



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1

AVG= 24
6 = 4 AVG= 24

6 = 4 AVG= 12
3 = 4

Note that in each of the three orbits average of the statistic ϕ is
the same.



Main definition: Homomesic

MAIN DEF: Given an (invertible) action τ on a finite set of
objects S , call a statistic ϕ : S → C homomesic with respect to
(S , τ) iff the average of ϕ over each τ -orbit O is the same for all

O, i.e.,
1

#O
∑
s∈O

ϕ(s) does not depend on the choice of O.

Equivalently: the average of ϕ over each τ -orbit O is the same as
the average over the entire set S :

1

#O
∑
s∈O

ϕ(s) =
1

#S

∑
s∈S

ϕ(s).

So we can compute what the average should be before checking
whether a statistic is homomesic. Examples so far:

1 Bitstring rotation with the inversion statistic;

2 Winching
(
[n]
k

)
with “sum of opposite coords” statistic; and

3 Winching 2[n] with “k occurs in string” statistic.
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Partitions & Tableaux

A partition λ of n is a sequence of positive integers

λ = (λ1, λ2, . . . λl)

such that:

1 The terms are weakly decreasing, i.e., λ1 ≥ λ2 ≥ λ3 ≥ . . .
2 λ1 + λ2 + · · ·+ λl = n

Suppressing commas, we have seven partitions of 5:

5, 41, 32, 311, 221, 2111, 11111

represented visually as left-justified shapes (whose squares are
called cells):

, , , , · · ·



Near Standard Young Tableaux

Fix a positive integer N. A near standard Young tableau
(NYST) of shape λ and ceiling N, is a labeling of the cells of a
partition λ with distinct numbers from 1, 2, . . . ,N which increases
along each row and column. For example,

1 4 6 10

2 8 11

7 9 ,

1 2 3 5 7 9

4 8 10 13

6 11 12 but not

1 2 3 5 7 11

4 8 12 13

6 9 10

Such labelings are in easy bijection with sequences (“chains”) of
shapes that grow one box in each step. For example, the first
tableau above corresponds to:

, , , , , , , , .



Promotion of Near-Standard Young Tableaux

For each 1 ≤ i ≤ N − 1, let si be the action on NSYT’s with
ceiling N that replaces i (if it occurs in T ) by i + 1, and vice versa,
provided that this does not violate the increasing condition in the
definition of Young tableaux, and let ∂ be the composition of the
maps:

∂T := sN−1 ◦ sN−2 ◦ · · · ◦ s1T

This generalizes an operation on SYT introduced by
Schützenberger called promotion.
For example, applying s7 transforms the following tableau as
shown:

1 4 7 10
2 8 11 s7→
6 9

1 4 8 10
2 7 11
6 9



Promotion of NSYT

Here’s a step-by-step example of promotion, where the final
tableaux is ∂T = s10s9 · · · s1T .

T =

1 4 6 10
2 8 11
7 9 ,

1 4 6 10
2 8 11
7 9 ,

1 4 6 10
3 8 11
7 9 ,

1 3 6 10
4 8 11
7 9 ,

1 3 6 10
5 8 11
7 9 ,

1 3 5 10
6 8 11
7 9 ,

1 3 5 10
6 8 11
7 9 ,

1 3 5 10
6 7 11
8 9 ,

1 3 5 10
6 7 11
8 9 ,

1 3 5 9
6 7 11
8 10 ,

1 3 5 9
6 7 10
8 11 = ∂T .
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Here’s a step-by-step example of promotion, where the final
tableaux is ∂T = s10s9 · · · s1T .

T =

1 4 6 10
2 8 11
7 9 ,

1 4 6 10
2 8 11
7 9 ,

1 4 6 10
3 8 11
7 9 ,

1 3 6 10
4 8 11
7 9 ,

1 3 6 10
5 8 11
7 9 ,

1 3 5 10
6 8 11
7 9 ,

1 3 5 10
6 8 11
7 9 ,

1 3 5 10
6 7 11
8 9 ,

1 3 5 10
6 7 11
8 9 ,

1 3 5 9
6 7 11
8 10 ,

1 3 5 9
6 7 10
8 11 = ∂T .



A small example of promotion

(taken from J. Striker and N. Williams, Promotion and
Rowmotion, European J. Combin. 33 (2012), no. 8, 1919–1942;
http://arxiv.org/abs/1108.1172):

http://arxiv.org/abs/1108.1172


A small example of promotion: centrally symmetric sums



Promotion of Near-Standard Young Tableaux: homomesies

Conjecture

Let S be the set of Near-Standard Young Tableau of rectangular
shape λ, and ceiling N. If c and c ′ are opposite cells, i.e., c and c ′

are related by 180-degree rotation about the center, (note: the
case c = c ′ is permitted when λ is odd-by-odd), and ϕ(T ) denotes
the sum of the numbers in cells c and c ′, then ϕ is homomesic
with respect to (S , ∂) with average value N + 1.

Although rectangular shapes may appear to be a very special case,
they are one of the few shapes where the order of promotion on the
set of SYT is small, i.e., n or 2n. Striker & Williams point out that
the order of promotion on SYT of shape (8, 6) is 7,554,844,752.
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Basics of partially ordered sets

A partially ordered set (or poset) is a set with a binary relation
≤ which satisfies the following properties for every a, b, c ∈ P:
(a) reflexive (a ≤ a),
(b) antisymmetric (a ≤ b and b ≤ a =⇒ a = b), and
(c) transitive (a ≤ b and b ≤ c =⇒ a ≤ c). All our posets will be
finite and can be represented by directed graphs of minimal
covering relations, as I’ll draw on the board.

An antichain A ⊆ P is any set of unrelated elements. The
collection of all antichains is denoted A(P).

An order ideal I ⊆ P is any set with the property that z ∈ I and
x ≤ z in P =⇒ x ∈ I .
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Rowmotion: an invertible operation on antichains

Let A(P) be the set of antichains of a finite poset P.

Given A ∈ A(P), let τ(A) be the set of minimal elements of the
complement of the downward-saturation of A.
τ is invertible since it is a composition of three invertible
operations:

antichains←→ downsets←→ upsets←→ antichains

This map and its inverse have been considered with varying
degrees of generality, by many people more or less independently
(using a variety of nomenclatures and notations): Duchet, Brouwer
and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev,
Rush and Shi, and Striker and Williams. Following the latter we
call this rowmotion.



An example

1. Saturate downward

2. Complement

3. Take minimal element(s)

1−→ 2−→ 3−→

1



Example in lattice cell form

Viewing elements of the poset as squares below, we would map:

Area = 8

X X
−→

Area = 10

X

X X



Panyushev’s conjecture

Let ∆ be a reduced irreducible root system in Rn. (Picture coming
soon!)
Choose a system of positive roots and make it a poset of rank n by
decreeing that y covers x iff y − x is a simple root.
Conjecture (Conjecture 2.1(iii) in D.I. Panyushev, On orbits of
antichains of positive roots, European J. Combin. 30 (2009),
586-594): Let O be an arbitrary τ -orbit. Then

1

#O
∑
A∈O

#A =
n

2
.

In our language, the cardinality statistic is homomesic with respect
to the action of rowmotion on antichains in root posets.

Panyushev’s Conjecture 2.1(iii) (along with much else) was proved
by Armstrong, Stump, and Thomas in their article A uniform
bijection between nonnesting and noncrossing partitions,
http://arxiv.org/abs/1101.1277.

http://arxiv.org/abs/1101.1277


Picture of root posets

Here are the classes of posets included in Panyushev’s conjecture.

(Graphic courtesy of Striker-Williams.)



Panyushev’s conjecture: The An case, n = 2

Here we have just an orbit of size 2 and an orbit of size 3:

0 2 1

1 1

1

Within each orbit, the average antichain has cardinality n/2 = 1.



The case A3.

Here’s an example orbit taken from [AST] for the A3 root poset:

For A3 this action has three orbits (sized 2, 4, and 8), and the
average cardinality of an antichain is

1

8
(2 + 1 + 1 + 2 + 2 + 1 + 1 + 2) =

3

2



Antichains in [a]× [b]: cardinality is homomesic

A simpler-to-prove phenomenon of this kind concerns the poset
[a]× [b] (where [k] denotes the linear ordering of {1, 2, . . . , k}):

Theorem (Propp, R.)

Let O be an arbitrary τ -orbit in A([a]× [b]). Then

1

#O
∑
A∈O

#A =
ab

a + b
.

This is an easy consequence of unpublished work of Hugh Thomas
building on earlier work of Richard Stanley: see the last paragraph
of section 2 of R. Stanley, Promotion and evacuation,
http://www.combinatorics.org/ojs/index.php/eljc/

article/view/v16i2r9 .

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r9
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r9


Antichains in [a]× [b]: the case a = b = 2

Here we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average antichain has cardinality
ab/(a + b) = 1.

0 1 2 1

1 1

1



Antichains in [a]× [b]: centrally symmetric homomesies

Theorem (Propp, R.)

In any orbit, the number of A that contain (i , j) equals the number
of A that contain the opposite element
(i ′, j ′) = (a + 1− i , b + 1− j).

That is, the function 1i ,j − 1i ′,j ′ is homomesic under τ , with
average value 0 in each orbit.



Ideals in [a]× [b]: cardinality is homomesic

As we’ve seen, one can view rowmotion as acting either on
antichains (A(P)) or on order ideals (J(P)); we denote the latter
map τ . It turns out that the cardinality of the order ideal is also
homomesic w.r.t. rowmotion.

Theorem (Propp, R.)

Let O be an arbitrary τ -orbit in J([a]× [b]). Then

1

#O
∑
I∈O

#I =
ab

2
.

It’s worth noting even though there’s a strong connection between
the rowmotion map on antichains and on order ideals, that the
homomesy situation could be quite different.



Rowmotion on [4]× [2] A



Rowmotion on [4]× [2] A

1

Area = 0

2

Area = 1

3

Area = 3

4

Area = 5

5

Area = 7

6

Area = 8

(0+1+3+5+7+8) / 6 = 4



Rowmotion on [4]× [2] B



Rowmotion on [4]× [2] B

1

Area = 2

2

Area = 4

3

Area = 6

4

Area = 6

5

Area = 4

6

Area = 2

(2+4+6+6+4+2) / 6 = 4



Rowmotion on [4]× [2] C



Rowmotion on [4]× [2] C

1

Area = 3

2

Area = 5

3

Area = 4

4

Area = 3

5

Area = 5

6

Area = 4

(3+5+4+3+5+4) / 6 = 4



Ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average order ideal has cardinality ab/2 = 2.

0 1 3 4

2 2

1



Ideals in [a]× [b]: centrally symmetric homomesies

We also have homomesies for more refined statistics than #I .
Given (i , j) ∈ [a]× [b], and I an ideal in [a]× [b], define the
indicator function 1i ,j(I ) to be 1 or 0 according to whether or not I
contains (i , j).

Write (i ′, j ′) = (a + 1− i , b + 1− j), the point opposite (i , j) in the
poset.

Theorem (Propp, R.)

1i ,j + 1i ′,j ′ is homomesic under τ .



Toggling

In their 1995 article Orbits of antichains revisited , European J.
Combin. 16 (1995), 545–554, Cameron and Fon-der-Flaass give an
alternative description of τ .

Given I ∈ J(P) and x ∈ P, let τx(I ) = I4{x} (symmetric
difference) provided that I4{x} is an order ideal of P; otherwise,
let τx(I ) = I .

We call the involution τx “toggling at x”.

The involutions τx and τy commute unless x covers y or y covers
x .



An example

1. Toggle the top element

2. Toggle the left element

3. Toggle the right element

4. Toggle the bottom element

1−→ 2−→ 3−→ 4−→

1



Toggling from top to bottom

Theorem (Cameron and Fon-der-Flaass): Let x1, x2, . . . , xn be any
order-preserving enumeration of the elements of the poset P. Then
the action on J(P) given by the composition τx1 ◦ τx2 ◦ · · · ◦ τxn
coincides with the action of τ .

In the particular case P = [a]× [b], we can enumerate P
rank-by-rank; that is, we can list the (i , j)’s in order of increasing
i + j .

Note that all the involutions coming from a given rank of P
commute with one another, since no two of them are in a covering
relation.

Striker and Williams refer to τ (and τ) as rowmotion, since for
them, “row” means “rank”.



Toggling from side to side

Define a file in P = [a]× [b] to be the set of all (i , j) ∈ P with
i − j equal to some fixed value k .

Note that all the involutions coming from a given file commute
with one another, since no two of them are in a covering relation.

It follows that for any enumeration x1, x2, . . . , xn of the elements of
the poset [a]× [b] arranged in order of increasing i − j , the action
on J(P) given by τx1 ◦ τx2 ◦ · · · ◦ τxn doesn’t depend on which
enumeration was used.

Striker and Williams call this well-defined composition promotion,
and denote it by ∂, since for two-rowed tableaux it can be related
to Schützenberger’s promotion on SYT, described earlier.



Promoting ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

0 2 4 2

1 3

1



J([a]× [b]): cardinality is homomesic under promotion

Claim (Propp, R.): Let O be an arbitrary orbit in J([a]× [b])
under the action of promotion ∂. Then

1

#O
∑
I∈O

#I =
ab

2
.

The result about cyclic rotation of binary words discussed earlier
turns out to be a special case of this.



Root posets of type A: antichains

Recall that, by the Armstrong-Stump-Thomas theorem, the
cardinality of antichains is homomesic under the action of
rowmotion, where the poset P is a root poset of type An.
E.g., for n = 2:

Antichain-cardinality is homomesic: in each orbit, its average is 1.

0 2 1

1 1

1



Root posets of type A: order ideals

What if instead of antichains we take order ideals?

E.g., n = 2:

What is homomesic here?

1



Root posets of type A: rank-signed cardinality

0 2 1

1 1

+ + + +

+ +

−

1



Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan): Let P be the root poset of type An. If we

assign an element x ∈ P weight wt(x) = (−1)rank(x), and assign
an order ideal I ∈ J(P) weight ϕ(I ) =

∑
x∈I wt(x), then ϕ is

homomesic under rowmotion and promotion, with average n/2.



The order polytope of a poset

Let P be a poset, with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y)
whenever x ≤P y .
We can generalize our entire setup of toggle operators and
“rowmotion” to operate on these functions (the “continuous
piecewise-linear (CPL) category”).



Flipping-maps in the order polytope

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Note that the interval [minz ·>x f (z),maxw<· x f (w)] is precisely
the set of values that f ′(x) could have so as to satisfy the
order-preserving condition, if f ′(y) = f (y) for all y 6= x ;
the map that sends f (x) to minz ·>x f (z) + maxw<· x f (w)− f (x)
is just the affine involution that swaps the endpoints.



Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z ·>x

f (z) + max
w<· x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9



Flipping and toggling

If we associate each order-ideal I with the indicator function f of
P \ I (that is, the function that takes the value 0 on I and the
value 1 everywhere else), then toggling I at x is tantamount to
flipping f at x .

That is, we can identify J(P) with the vertices of the polytope
O(P) in such a way that toggling can be seen to be a special case
of flipping.

This may be clearer if you think of J(P) as being in bijection with
the set of monotone 0,1-valued functions on P.



Flipping

Flipping (at least in special cases) is not new, though it is not
well-studied; the most worked-out example we’ve seen is
Berenstein and Kirillov’s article Groups generated by involutions,
Gelfand-Tsetlin patterns and combinatorics of Young tableaux (St.
Petersburg Math. J. 7 (1996), 77–127); see
http://pages.uoregon.edu/arkadiy/bk1.pdf.

http://pages.uoregon.edu/arkadiy/bk1.pdf


Composing flips

Just as we can apply toggle-maps from top to bottom, we can
apply flip-maps from top to bottom:

.8 .6 .6

.4 .3 .4 .3 .3 .3

.1 .1 .1

.6 .6

.3 .4 .3 .4

.1 .2

(Here we successively flip values at the North, West, East, and
South.)



Example of CPL rowmotion

Two orbits of CPL rowmotion (flipping values from top to bottom):

.7 .7 .9 .9

.2 .4 .6 .4 .6 .8 .6 .4

.1 .3 .3 .1

1 1 1 1

1 0 0 1 1 0 0 1

0 0 0 0

The average at each node across the respective orbits is:

.8 1

.5 .5 0.5 0.5

.2 0



Conjectures in the CPL category

It appears that all of the aforementioned results on homomesy for
rowmotion and promotion on J([a]× [b]) lift to corresponding
results in the order polytope, where instead of composing
toggle-maps to obtain rowmotion and promotion we compose the
corresponding flip-maps to obtain continuous piecewise-linear maps
from O([a]× [b]) to itself.

The first step would be to show that rowmotion and promotion on
O([a]× [b]), defined as above, are maps of order a + b.



Order of flipping affects order of the composition!

In the combinatorial setting, where A(P) and J(P) are finite, it’s
clear that any map defined as a product of toggles has finite order.
But we can no longer take this for granted in the CPL setting.
Let P = [2]× [2]. As we’ll soon see, one can show by brute force
that the CPL map

σ(1,1) ◦ σ(1,2) ◦ σ(2,1) ◦ σ(2,2)
(“lifted rowmotion”) is of order four, as is

σ(2,1) ◦ σ(1,1) ◦ σ(2,2) ◦ σ(1,2)
(“lifted promotion”). However, not every composition of flips has
finite order.

Proposition (Einstein): The CPL map

σ(1,1) ◦ σ(1,2) ◦ σ(2,2) ◦ σ(2,1)
(flipping values in clockwise order, as opposed to going by rows or
columns of P) is of infinite order.



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary
ring operations (+, ·) with the tropical operations (max,+). In the
continuous piecewise-linear (CPL) category of the order polytope
studied above, our flipping-map at x replaced the value of a
function f : P → [0, 1] at a point x ∈ P with f ′, where

f ′(x) := min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

We can“detropicalize” this flip map and apply it to an assignment

f : P → R(x) of rational functions to the nodes of the poset
(using that min(zi ) = −max(−zi )) to get

f ′(x) =

∑
w<· x f (w)

f (x)
∑

z ·>x
1

f (z)



Example of birational rowmotion

In our running example, P = [2]× [2], applying these new flip
operators from top to bottom creates a new rowmotion operator.
(Here we assign f (0̂) = f (1̂) = 1.)

z x+y
z

x+y
z

x y 7→ x y 7→ w(x+y)
xz y 7→

w w w

x+y
z

x+y
z

w(x+y)
xz

w(x+y)
yz 7→ w(x+y)

xz
w(x+y)

yz

w 1
z



Example of birational rowmotion orbit

Here’s an orbit of rowmotion in this category:

z x+y
z

w(x+y)
xy

x y 7→ w(x+y)
xz

w(x+y)
yz 7→ 1

y
1
x 7→

w 1
z

z
x+y

1
w z

yz
w(x+y)

xz
w(x+y) 7→ x y

xy
w(x+y) w



Geometric Homomesy

In this category, geometric means replace arithmetic means, so
let’s compute the product of the function values at each node.

z x+y
z

w(x+y)
xy

x y 7→ w(x+y)
xz

w(x+y)
yz 7→ 1

y
1
x 7→

w 1
z

z
x+y

1
w

(x+y)2

xy
yz

w(x+y)
xz

w(x+y) PROD = 1 1
xy

w(x+y)
xy

(x+y)2



Geometric homomesy with boundary variables

If we instead generically assign variables f (0̂) = α and f (1̂) = ω:

ω

z (x+y)ω
z

w(x+y)ω
xy

x y 7→ w(x+y)ω
xz

w(x+y)ω
yz 7→ αω

y
αω
x

w αω
z

αz
x+y

α

αω
w αω3 (x+y)2

xy
αyz

w(x+y)
αxz

w(x+y) PROD = α2ω2 α2ω2

αxy
w(x+y) α3ω xy

(x+y)2

So the statistic “multiply opposite nodes” has geometric mean αω
across the orbit.



For what posets does this work?

It’s not hard to see that if a map such as rowmotion is homomesic
with respect to some statistics in the birational (geometric)
setting, then this implies homomesy at the CPL level, which in
turn implies it in the combinatorial setting (which is the only level
at which we currently have proofs).
We believe that geometrical versions of homomesy in the birational
category holds for a large class of posets, often ones that come up
in representation theory. There are also simple examples of posets,
e.g., the Boolean algebra B3 for which nothing we have tried
appears to hold. For example, it appears (conjecturally) that
birational rowmotion has infinite order on B3.



Conclusion

A recently identified phenomenon called homomesy appears to
be lurking in a wide range of combinatorial settings.

We are just beginning to develop tools for studying this, so
there are many interesting open problems.

There are intriguing conjectured generalizations to continuous
piecewise-linear maps on order polytopes and to “birational”
maps on {f : P → R(x1, x2, . . . xn)}.
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The last slide of this talk

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

For more information, see:

http://jamespropp.org/ucbcomb12.pdf

http://jamespropp.org/mathfest12a.pdf

http://www.math.uconn.edu/∼troby/combErg2012kizugawa.pdf
http://jamespropp.org/mitcomb13a.pdf

http://www.math.uconn.edu/~troby/ceFPSAC.pdf

Thanks for your attention!

http://www.math.uconn.edu/~troby/research.html
http://jamespropp.org/ucbcomb12.pdf
http://jamespropp.org/mathfest12a.pdf
http://www.math.uconn.edu/~troby/combErg2012kizugawa.pdf
http://jamespropp.org/mitcomb13a.pdf
http://www.math.uconn.edu/~troby/ceFPSAC.pdf
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