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Abstract

For many invertible actions τ on a finite set S of combinatorial
objects, and for many natural statistics ϕ on S, one finds that the
triple (S , τ, ϕ) exhibits ”homomesy”: the average of ϕ over each
τ -orbit in S is the same as the average of ϕ over the whole set S.
(Example: Let S be the set of binary sequences s = (s1, ..., sn)
containing k 1’s and n − k 0’s, let τ be the cyclic shift, and let
ϕ(s) be the inversion number #i < j : si > sj .)

This phenomenon was first noticed by Panyushev in 2007 in the
context of antichains in root posets; Armstrong, Stump, and
Thomas proved Panyushev’s conjecture in 2011. In this talk,
describing joint work with Jim Propp and Shahrzad Haddadan, we
describe a theoretical framework for results of this kind, and give a
number of examples (some proved and some conjectural) from
different parts of combinatorics. We also discuss in detail
homomesy for the operations of rowmotion and promotion (in
Striker and Williams’ terminology) acting on a product of two
chains.
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Overview

Main definition and introductory examples;

Poset operations generated by toggles: “promotion” &
“rowmotion”;

Homomesy in poset operations;

Generalizing to other categories.

Please interrupt with questions!



Main Definition

For many actions τ on a finite set S of combinatorial objects, and
for many natural real-valued statistics ϕ on S , one finds that the
ergodic average

lim
n→∞

1

n

n−1∑
i=0

ϕ(τ i (x))

is independent of the starting point x ∈ S .

We say that ϕ is homomesic (from Greek: “same middle”) with
respect to the combinatorial dynamical system (S , τ).

I’ll give a variety of examples of homomesies (homomesic
functions), some proven and others conjectural.

Please interrupt with questions!



Introductory examples

1 Rotation of bit-strings;

2 Bulgarian solitaire;

3 Promotion of Near-Standard Young Tableaux; and

4 Suter’s dihedral symmetries on Young’s lattice.



Example 1: Rotation of bit-strings

Set S =
(
[n]
k

)
, thought of as length n binary strings with k 1’s.

τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1 (cyclic

shift), and ϕ(b) = #inversions(b) = #{i < j : bi > bj}.
Then over any orbit O we have:

1

#O
∑
s∈O

ϕ(s) =
k(n − k)

2
=

1

#S

∑
s∈S

ϕ(s).

EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 1010
1100 0101
0110
0011
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Example 1: Rotation of bit-strings

Set S =
(
[n]
k

)
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1
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EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 7→ 2 1010 7→ 3
1100 7→ 4 0101 7→ 1
0110 7→ 2 AVG = 4

2 = 2
0011 7→ 0

AVG= 8
4 = 2



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101
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More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1
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More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1

AVG= 24
6 = 4 AVG= 24

6 = 4 AVG= 12
3 = 4

We know two simple ways to prove this: one can show pictorially
that the value of the sum doesn’t change when you mutate b
(replacing a 01 somewhere in b by 10 or vice versa), or one can
write the number of inversions in b as

∑
i<j bi (1− bj) and then

perform algebraic manipulations.



Example 2: Bulgarian solitaire

Given a way of dividing n identical chips into one or more heaps
(represented as a partition λ of n), define τ(λ) as the partition of
n that results from removing a chip from each heap and putting all
the removed chips into a new heap.

E.g., for n = 8, two trajectories are
53→ 422→ 3311→ 422→ . . .

and
62→ 521→ 431→ 332→ 3221→ 4211→ 431→ . . .

(the new heaps are underlined).

Let ϕ(λ) be the number of parts of λ.
In the forward orbit of λ = (5, 3), the average value of ϕ is

(4 + 3)/2 = 7/2;
in the forward orbit of λ = (6, 2), the average value of ϕ is

(3 + 4 + 4 + 3)/4 = 14/4 = 7/2.



Bulgarian solitaire: homomesies

Proposition

If n = k(k − 1)/2 + j with 0 ≤ j < k, then for every partition λ of
n, the ergodic average of ϕ on the forward orbit of λ is k − 1 + j/k.

(n = 8 corresponds to k = 4, j = 2.)

So the number-of-parts statistic on partitions of n is homomesic
under the Bulgarian solitaire map.

The same is true for the size of the largest part, the size of the
second largest part, etc.



Ignoring transience

Since S is finite, every forward orbit is eventually periodic, and the
ergodic average of ϕ for the forward orbit that starts at x is just
the average of ϕ over the periodic orbit that x eventually goes into.

So an equivalent way of stating our main definition in this case is,
ϕ is homomesic with respect to (S , τ) iff the average of ϕ over
each periodic τ -orbit O is the same for all O.

In the rest of this talk, we’ll restrict attention to maps τ that are
invertible on S , so transience is not an issue.



Example 3: Promotion of Near-Standard Young Tableaux

Given a positive integer N, define a Near-Standard Young Tableau
(NSYT) with “ceiling” N as a Young tableau T in which entries
are distinct integers between 1 and N.

(When N equals the number of cells of T , this is just the definition
of a Standard Young Tableau.)

For each 1 ≤ i ≤ N − 1, let si be the action on NSYT’s with
ceiling N that replaces i (if it occurs in T ) by i + 1, and vice versa,
provided that this does not violate the increasing condition in the
definition of Young tableaux, and let ∂ be the composition of the
maps:

∂T := sN−1 ◦ sN−2 ◦ · · · ◦ s1T

This generalizes an operation on SYT introduced by
Schützenberger called promotion.
For example, applying s7 transforms the following tableau as
shown:

1 4 7 10
2 8 11 s7→
6 9

1 4 8 10
2 7 11
6 9



Promotion of NSYT

Here’s a step-by-step example of promotion, where the final
tableaux is ∂T = s10s9 · · · s1T .

T =

1 4 6 10
2 8 11
7 9 ,

1 4 6 10
2 8 11
7 9 ,

1 4 6 10
3 8 11
7 9 ,

1 3 6 10
4 8 11
7 9 ,

1 3 6 10
5 8 11
7 9 ,

1 3 5 10
6 8 11
7 9 ,

1 3 5 10
6 8 11
7 9 ,

1 3 5 10
6 7 11
8 9 ,

1 3 5 10
6 7 11
8 9 ,

1 3 5 9
6 7 11
8 10 ,

1 3 5 9
6 7 10
8 11 = ∂T .
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A small example of promotion

(taken from J. Striker and N. Williams, Promotion and
Rowmotion, European J. Combin. 33 (2012), no. 8, 1919–1942;
http://arxiv.org/abs/1108.1172):

http://arxiv.org/abs/1108.1172


A small example of promotion: centrally symmetric sums



Promotion of Near-Standard Young Tableaux: homomesies

Conjecture

Let S be the set of Near-Standard Young Tableau of rectangular
shape λ, and ceiling N. If c and c ′ are opposite cells, i.e., c and c ′

are related by 180-degree rotation about the center, (note: the
case c = c ′ is permitted when λ is odd-by-odd), and ϕ(T ) denotes
the sum of the numbers in cells c and c ′, then ϕ is homomesic
with respect to (S , ∂) with average value N + 1.

Although rectangular shapes may appear to be a very special case,
they are one of the few shapes where the order of promotion on the
set of SYT is small, i.e., n or 2n. Striker & Williams point out that
the order of promotion on SYT of shape (8, 6) is 7,554,844,752.
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Rowmotion: an invertible operation on antichains

Let A(P) be the set of antichains of a finite poset P.

Given A ∈ A(P), let τ(A) be the set of minimal elements of the
complement of the downward-saturation of A.
τ is invertible since it is a composition of three invertible
operations:

antichains←→ downsets←→ upsets←→ antichains

This map and its inverse have been considered with varying
degrees of generality, by many people more or less independently
(using a variety of nomenclatures and notations): Duchet, Brouwer
and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev,
Rush and Shi, and Striker and Williams. Following the latter we
call this rowmotion.



An example

1. Saturate downward

2. Complement

3. Take minimal element(s)

1−→ 2−→ 3−→

1



Example in lattice cell form

Viewing the elements of the poset as squares below, we would
map:

Area = 8

X X
−→

Area = 10

X

X X



Panyushev’s conjecture

Let ∆ be a reduced irreducible root system in Rn. (Picture coming
soon!)
Choose a system of positive roots and make it a poset of rank n by
decreeing that y covers x iff y − x is a simple root.
Conjecture (Conjecture 2.1(iii) in D.I. Panyushev, On orbits of
antichains of positive roots, European J. Combin. 30 (2009),
586-594): Let O be an arbitrary τ -orbit. Then

1

#O
∑
A∈O

#A =
n

2
.

In our language, the cardinality statistic is homomesic with respect
to the action of rowmotion on antichains in root posets.

Panyushev’s Conjecture 2.1(iii) (along with much else) was proved
by Armstrong, Stump, and Thomas in their article A uniform
bijection between nonnesting and noncrossing partitions,
http://arxiv.org/abs/1101.1277.

http://arxiv.org/abs/1101.1277


Picture of root posets

Here are the classes of posets included in Panyushev’s conjecture.

(Graphic courtesy of Striker-Williams.)



Panyushev’s conjecture: The An case, n = 2

Here we have just an orbit of size 2 and an orbit of size 3:

0 2 1

1 1

1

Within each orbit, the average antichain has cardinality n/2 = 1.



The case A3.

Here’s an example orbit taken from [AST] for the A3 root poset:

For A3 this action has three orbits (sized 2, 4, and 8), and the
average cardinality of an antichain is

1

8
(2 + 1 + 1 + 2 + 2 + 1 + 1 + 2) =

3

2



Antichains in [a]× [b]: cardinality is homomesic

A simpler-to-prove phenomenon of this kind concerns the poset
[a]× [b] (where [k] denotes the linear ordering of {1, 2, . . . , k}):

Theorem (Propp, R.)

Let O be an arbitrary τ -orbit in A([a]× [b]). Then

1

#O
∑
A∈O

#A =
ab

a + b
.

This is an easy consequence of unpublished work of Hugh Thomas
building on earlier work of Richard Stanley: see the last paragraph
of section 2 of R. Stanley, Promotion and evacuation,
http://www.combinatorics.org/ojs/index.php/eljc/

article/view/v16i2r9 .

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r9
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r9


Antichains in [a]× [b]: the case a = b = 2

Here we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average antichain has cardinality
ab/(a + b) = 1.

0 1 2 1

1 1

1



Antichains in [a]× [b]: fiber-cardinality is homomesic

0 0 0 1 1 1 1 0

1 0 0 1

1

Within each orbit, the average antichain has
1/2 a green element and 1/2 a blue element.



Antichains in [a]× [b]: fiber-cardinality is homomesic

For (i , j) ∈ [a]× [b], and A an antichain in [a]× [b], let 1i ,j(A) be
1 or 0 according to whether or not A contains (i , j).

Also, let fi (A) =
∑

j∈[b] 1i ,j(A) ∈ {0, 1} (the cardinality of the
intersection of A with the fiber {(i , 1), (i , 2), . . . , (i , b)} in
[a]× [b]), so that #A =

∑
i fi (A).

Likewise let gj(A) =
∑

i∈[a] 1i ,j(A), so that #A =
∑

j gj(A).

Theorem (Propp, R.)

For all i , j ,

1

#O
∑
A∈O

fi (A) =
b

a + b
and

1

#O
∑
A∈O

gj(A) =
a

a + b
.

The indicator functions fi and gj are homomesic under τ , even
though the indicator functions 1i ,j aren’t.



Antichains in [a]× [b]: centrally symmetric homomesies

Theorem (Propp, R.)

In any orbit, the number of A that contain (i , j) equals the number
of A that contain the opposite element
(i ′, j ′) = (a + 1− i , b + 1− j).

That is, the function 1i ,j − 1i ′,j ′ is homomesic under τ , with
average value 0 in each orbit.



Linearity

Useful triviality: every linear combination of homomesies is itself
homomesic.

E.g., consider the adjusted major index statistic defined by
amaj(A) =

∑
(i ,j)∈A(i − j).

Propp and R. proved that amaj is homomesic under τ
by writing it as a linear combination of the functions 1i ,j − 1i ′,j ′ .
Haddadan gave a simpler proof,
writing amaj as a linear combination of the functions fi and gj .

Question: Are there other homomesic combinations of the
indicator functions 1i ,j (with (i , j) ∈ [a]× [b]),
linearly independent of the functions fi , gj , and 1i ,j − 1i ′,j ′?



From antichains to order ideals

Given a poset P and an antichain A in P, let I(A) be the order
ideal I = {y ∈ P : y ≤ x for some x ∈ A} associated with A, so
that for any order ideal I in P, I−1(I ) is the antichain of maximal
elements of I .

As usual, we let J(P) denote the set of (order) ideals of P.

We define τ : J(P)→ J(P) by τ(I ) = I(τ(I−1(I ))). That is, τ(I )
is the downward saturation of the set of minimal elements of the
complement of I .

For (i , j) ∈ P and I ∈ J(P), let 1i ,j(I ) be 1 or 0 according to
whether or not I contains (i , j).



One action, two vector spaces

τ is “the same” τ in the sense that the standard bijection from
A(P) to J(P) (downward saturation) makes the following diagram
commute:

A(P)
τ−→ A(P)

↓ ↓
J(P)

τ−→ J(P)

However, the bijection from A(P) to J(P) does not carry the
vector space generated by the functions 1i ,j to the vector space
generated by the functions 1i ,j in a linear way.

So the homomesy situation for τ : J(P)→ J(P) could be
(and, as we’ll see, is) different from the homomesy situation for
τ : A(P)→ A(P).



Ideals in [a]× [b]: cardinality is homomesic

As we’ve seen, one can view rowmotion as acting either on
antichains (A(P)) or on order ideals (J(P)); we denote the latter
map τ . It turns out that the cardinality of the order ideal is also
homomesic w.r.t. rowmotion.

Theorem (Propp, R.)

Let O be an arbitrary τ -orbit in J([a]× [b]). Then

1

#O
∑
I∈O

#I =
ab

2
.

It’s worth noting even though there’s a strong connection between
the rowmotion map on antichains and on order ideals, that the
homomesy situation could be quite different.



Rowmotion on [4]× [2] A



Rowmotion on [4]× [2] A

1

Area = 0

2

Area = 1

3

Area = 3

4

Area = 5

5

Area = 7

6

Area = 8

(0+1+3+5+7+8) / 6 = 4



Rowmotion on [4]× [2] B



Rowmotion on [4]× [2] B

1

Area = 2

2

Area = 4

3

Area = 6

4

Area = 6

5

Area = 4

6

Area = 2

(2+4+6+6+4+2) / 6 = 4



Rowmotion on [4]× [2] C



Rowmotion on [4]× [2] C

1

Area = 3

2

Area = 5

3

Area = 4

4

Area = 3

5

Area = 5

6

Area = 4

(3+5+4+3+5+4) / 6 = 4



Ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average order ideal has cardinality ab/2 = 2.

0 1 3 4

2 2

1



Ideals in [a]× [b]: file-cardinality is homomesic

0 0 0 0 1 0 1 1 1 1 2 1

1 1 0 0 1 1

1

Within each orbit, the average order ideal has
1/2 a violet element, 1 red element, and 1/2 a brown element.



Ideals in [a]× [b]: file-cardinality is homomesic

For 1− b ≤ k ≤ a− 1, define the kth file of [a]× [b] as

{(i , j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, i − j = k}.

For 1− b ≤ k ≤ a− 1, let hk(I ) be the number of elements of I in
the kth file of [a]× [b], so that #I =

∑
k hk(I ).

Theorem (Propp, R.)

For every τ -orbit O in J([a]× [b]),

1

#O
∑
I∈O

hk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.



Ideals in [a]× [b]: centrally symmetric homomesies

Recall that for (i , j) ∈ [a]× [b], and I an ideal in [a]× [b], 1i ,j(I ) is
1 or 0 according to whether or not I contains (i , j).

Write (i ′, j ′) = (a + 1− i , b + 1− j), the point opposite (i , j) in the
poset.

Theorem (Propp, R.)

1i ,j + 1i ′,j ′ is homomesic under τ .

Question: In addition to the functions hk and 1i ,j + 1i ′,j ′ , are
there other homomesic functions in the span of the functions 1i ,j?



The two vector spaces, compared

In the space associated with antichains:
fiber-cardinalities and
centrally symmetric differences

are homomesic.

In the space associated with order ideals:
file-cardinalities and
centrally symmetric sums

are homomesic.



Toggling

In their 1995 article Orbits of antichains revisited , European J.
Combin. 16 (1995), 545–554, Cameron and Fon-der-Flaass give an
alternative description of τ .

Given I ∈ J(P) and x ∈ P, let τx(I ) = I4{x} provided that
I4{x} is an order ideal of P; otherwise, let τx(I ) = I .

We call the involution τx “toggling at x”.

The involutions τx and τy commute unless x covers y or y covers
x .



An example

1. Toggle the top element

2. Toggle the left element

3. Toggle the right element

4. Toggle the bottom element

1−→ 2−→ 3−→ 4−→

1



Toggling from top to bottom

Theorem (Cameron and Fon-der-Flaass): Let x1, x2, . . . , xn be any
order-preserving enumeration of the elements of the poset P. Then
the action on J(P) given by the composition τx1 ◦ τx2 ◦ · · · ◦ τxn
coincides with the action of τ .

In the particular case P = [a]× [b], we can enumerate P
rank-by-rank; that is, we can list the (i , j)’s in order of increasing
i + j .

Note that all the involutions coming from a given rank of P
commute with one another, since no two of them are in a covering
relation.

Striker and Williams refer to τ (and τ) as rowmotion, since for
them, “row” means “rank”.



Toggling from side to side

Recall that a file in P = [a]× [b] is the set of all (i , j) ∈ P with
i − j equal to some fixed value k .

Note that all the involutions coming from a given file commute
with one another, since no two of them are in a covering relation.

It follows that for any enumeration x1, x2, . . . , xn of the elements of
the poset [a]× [b] arranged in order of increasing i − j , the action
on J(P) given by τx1 ◦ τx2 ◦ · · · ◦ τxn doesn’t depend on which
enumeration was used.

Striker and Williams call this well-defined composition promotion,
and denote it by ∂, since it is closely related to Schützenberger’s
notion of promotion on linear extensions of posets.



Promoting ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

0 2 4 2

1 3

1



J([a]× [b]): cardinality is homomesic under promotion

Claim (Propp, R.): Let O be an arbitrary orbit in J([a]× [b])
under the action of promotion ∂. Then

1

#O
∑
I∈O

#I =
ab

2
.

The result about cyclic rotation of binary words discussed earlier
turns out to be a special case of this.



J([a]× [b]): file-cardinality is homomesic under promotion

For 1− b ≤ k ≤ a− 1, let fk(I ) be the number of elements of I in
the kth file of [a]× [b], so that #I =

∑
k fk(I ).

Theorem (Propp, R.): If O is any ∂-orbit in J([a]× [b]),

1

#O
∑
I∈O

fk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.



A([a]× [b]) under promotion

Cardinality of antichains is not homomesic under promotion.
although the antipodal functions 1i ,j − 1i ′,j ′ are.



Root posets of type A: antichains

Recall that, by the Armstrong-Stump-Thomas theorem, the
cardinality of antichains is homomesic under the action of
rowmotion, where the poset P is a root poset of type An.
E.g., for n = 2:

Antichain-cardinality is homomesic: in each orbit, its average is 1.

0 2 1

1 1

1



Root posets of type A: order ideals

What if instead of antichains we take order ideals?

E.g., n = 2:

What is homomesic here?

1



Root posets of type A: rank-signed cardinality

0 2 1

1 1

+ + + +

+ +

−

1



Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan): Let P be the root poset of type An. If we

assign an element x ∈ P weight wt(x) = (−1)rank(x), and assign a
order ideal I ∈ J(P) weight ϕ(I ) =

∑
x∈I wt(x), then ϕ is

homomesic under rowmotion and promotion, with average n/2.



Generalizing to CPL setting: the order polytope of a poset

We can generalize this idea of composition of toggles to define a
continuous piecewise-linear (CPL) version of rowmotion on an
infinite set of functions on a poset.

Let P be a poset, with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.
The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y)
whenever x ≤P y .



Generalizing to CPL setting: the order polytope of a poset

We can generalize this idea of composition of toggles to define a
continuous piecewise-linear (CPL) version of rowmotion on an
infinite set of functions on a poset.

Let P be a poset, with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.
The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y)
whenever x ≤P y .



Flipping-maps in the order polytope

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Note that the interval [minz ·>x f (z),maxw<· x f (w)] is precisely
the set of values that f ′(x) could have so as to satisfy the
order-preserving condition, if f ′(y) = f (y) for all y 6= x ;
the map that sends f (x) to minz ·>x f (z) + maxw<· x f (w)− f (x)
is just the affine involution that swaps the endpoints.



Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z ·>x

f (z) + max
w<· x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9



Flipping and toggling

If we associate each order-ideal I with the indicator function of
P \ I (that is, the function that takes the value 0 on I and the
value 1 everywhere else), then toggling I at x is tantamount to
flipping f at x .

That is, we can identify J(P) with the vertices of the polytope
O(P) in such a way that toggling can be seen to be a special case
of flipping.

This may be clearer if you think of J(P) as being in bijection with
the set of monotone 0,1-valued functions on P.



Flipping

Flipping (at least in special cases) is not new, though it is not
well-studied; the most worked-out example we’ve seen is
Berenstein and Kirillov’s article Groups generated by involutions,
Gelfand-Tsetlin patterns and combinatorics of Young tableaux (St.
Petersburg Math. J. 7 (1996), 77–127); see
http://pages.uoregon.edu/arkadiy/bk1.pdf.

http://pages.uoregon.edu/arkadiy/bk1.pdf


Composing flips

Just as we can apply toggle-maps from top to bottom, we can
apply flip-maps from top to bottom:

.8 .6 .6

.4 .3 .4 .3 .3 .3

.1 .1 .1

.6 .6

.3 .4 .3 .4

.1 .2

(Here we successively flip values at the North, West, East, and
South.)



Example of CPL rowmotion

Two orbits of CPL rowmotion (flipping values from top to bottom):

.7 .7 .9 .9

.2 .4 .6 .4 .6 .8 .6 .4

.1 .3 .3 .1

1 1 1 1

1 0 0 1 1 0 0 1

0 0 0 0

The average at each node across the respective orbits is:

.8 1

.5 .5 0.5 0.5

.2 0



Conjectures in the CPL category

It appears that all of the aforementioned results on homomesy for
rowmotion and promotion on J([a]× [b]) lift to corresponding
results in the order polytope, where instead of composing
toggle-maps to obtain rowmotion and promotion we compose the
corresponding flip-maps to obtain continuous piecewise-linear maps
from O([a]× [b]) to itself.

The first step would be to show that rowmotion and promotion on
O([a]× [b]), defined as above, are maps of order a + b.



Order of flipping affects order of the composition!

In the combinatorial setting, where A(P) and J(P) are finite, its
clear that any map defined as a product of toggles has finite order.
But we can no longer take this for granted in the CPL setting.
Let P = [2]× [2]. As we’ll soon see, one can show by brute force
that the CPL map

σ(1,1) ◦ σ(1,2) ◦ σ(2,1) ◦ σ(2,2)
(“CPL rowmotion”) is of order four, as is

σ(2,1) ◦ σ(1,1) ◦ σ(2,2) ◦ σ(1,2)
(“CPL promotion”). However, not every composition of flips has
finite order.

Proposition (Einstein): The CPL map

σ(1,1) ◦ σ(1,2) ◦ σ(2,2) ◦ σ(2,1)
(flipping values in clockwise order, as opposed to going by rows or
columns of P) is of infinite order.



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary
ring operations (+, ·) with the tropical operations (max,+). In the
continuous piecewise-linear (CPL) category of the order polytope
studied above, our flipping-map at x replaced the value of a
function f : P → [0, 1] at a point x ∈ P with f ′, where

f ′(x) := min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

We can“detropicalize” this flip map and apply it to an assignment

f : P → R(x) of rational functions to the nodes of the poset
(using that min(zi ) = −max(−zi )) to get

f ′(x) =

∑
w<· x f (w)

f (x)
∑

z ·>x
1

f (z)



Example of birational rowmotion

In our running example, P = [2]× [2], applying these new flip
operators from top to bottom creates a new rowmotion operator.
(Here we assign f (0̂) = f (1̂) = 1.)

z x+y
z

x+y
z

x y 7→ x y 7→ w(x+y)
xz y 7→

w w w

x+y
z

x+y
z

w(x+y)
xz

w(x+y)
yz 7→ w(x+y)

xz
w(x+y)

yz

w 1
z



Example of birational rowmotion orbit

Here’s an orbit of rowmotion in this category:

z x+y
z

w(x+y)
xy

x y 7→ w(x+y)
xz

w(x+y)
yz 7→ 1

y
1
x 7→

w 1
z

z
x+y

1
w z

yz
w(x+y)

xz
w(x+y) 7→ x y

xy
w(x+y) w



Geometric Homomesy

In this category, geometric means replace arithmetic means, so
let’s compute the product of the function values at each node.

z x+y
z

w(x+y)
xy

x y 7→ w(x+y)
xz

w(x+y)
yz 7→ 1

y
1
x 7→

w 1
z

z
x+y

1
w

(x+y)2

xy
yz

w(x+y)
xz

w(x+y) PROD = 1 1
xy

w(x+y)
xy

(x+y)2



Geometric homomesy with boundary variables

If we instead generically assign variables f (0̂) = α and f (1̂) = ω:

ω

z (x+y)ω
z

w(x+y)ω
xy

x y 7→ w(x+y)ω
xz

w(x+y)ω
yz 7→ αω

y
αω
x

w αω
z

αz
x+y

α

αω
w αω3 (x+y)2

xy
αyz

w(x+y)
αxz

w(x+y) PROD = α2ω2 α2ω2

αxy
w(x+y) α3ω xy

(x+y)2

So the statistic “multiply opposite nodes” has geometric mean αω
across the orbit.



For what posets does this work?

It’s not hard to see that if a map such as rowmotion is homomesic
with respect to some statistics in the birational (geometric)
setting, then this implies homomesy at the CPL level, which in
turn implies it in the combinatorial setting (which is the only level
at which we currently have proofs).
We believe that geometrical versions of homomesy in the birational
category holds for a large class of posets, often ones that come up
in representation theory. There are also simple examples of posets,
e.g., the Boolean algebra B3 for which nothing we have tried
appears to work.



Conclusion

A recently identified phenomenon called homomesy appears to
be lurking in a wide range of combinatorial settings.

We are just beginning to develop tools for studying this, so
there are many interesting open problems.

There are intriguing conjectured generalizations to continuous
piecewise-linear maps on order polytopes and to “birational”
maps on {f : P → R(x1, x2, . . . xn)}.
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The last slide of this talk

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

For more information, see:

http://jamespropp.org/ucbcomb12.pdf

http://jamespropp.org/mathfest12a.pdf

http://www.math.uconn.edu/∼troby/combErg2012kizugawa.pdf
http://jamespropp.org/mitcomb13a.pdf

http://www.math.uconn.edu/~troby/ceFPSAC.pdf

Thanks for your attention!

http://www.math.uconn.edu/~troby/research.html
http://jamespropp.org/ucbcomb12.pdf
http://jamespropp.org/mathfest12a.pdf
http://www.math.uconn.edu/~troby/combErg2012kizugawa.pdf
http://jamespropp.org/mitcomb13a.pdf
http://www.math.uconn.edu/~troby/ceFPSAC.pdf
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