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Abstract

Abstract: Within dynamical algebraic combinatorics one well-studied
map is *rowmotion*, which permutes the order ideals (or the antichains)
of a finite poset. On many posets, the orbit structure is interesting,
periodicity occurs surprisingly quickly, and many natural statistics satisfy
the *homomesy* (constant average for each orbit) property.

This entire story can be lifted to three higher levels: (a) the
piecewise-linear realm of order/chain polytopes of a poset; (b) the
birational realm of poset labelings by rational expressions; and (c) the
noncommutative realm, with partial maps on poset labelings by elements
of any ring. Antichains and order ideals provide two parallel liftings to each
realm which can be directly related to each other. While some properties
generalized surprisingly straightforwardly, others were more challenging. In
particular, periodicity in the noncommutative realm for rectangular posets
was only settled fairly recently in joint work with Darij Grinberg.
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Outline

In this talk we have two types of rowmotion, which we lift in parallel,
four realms for each:

1 Combinatorial rowmotion on
the set of antichains of a
poset P, ρA;

2 Piecewise-linear rowmotion on
the chain polytope of P, ρC ;

3 Birational Antichain
Rowmotion (BAR-motion) on
K-labelings of P, BAR;

4 Noncommutative Antichain
Rowmotion (NAR-motion) on
K-labelings of P, NAR;

5 Combinatorial rowmotion on
order filters/ideals of P, ρJ ;

6 Piecewise-linear rowmotion on
the order polytope of P, ρO;

7 Birational Order Rowmotion
(BOR-motion) on K-labelings
of P, BOR;

8 Noncommutative Order
Rowmotion (NOR-motion) on
K-labelings of P, NOR;

THEMES in DAC:
1 Periodicity/order and orbit structure;
2 Homomesy: statistics with the same average over every orbit;
3 Equivariant bijections: often give nice proofs;
4 Lifting to higher realms enriches the subject and fosters

connections.



Antichain Rowmotion

on Posets



Rowmotion: an invertible operation on antichains

Let A(P) be the set of antichains of a finite poset P .

Given A ∈ A(P), let ρA(A) be the set of minimal elements of the
complement of the downward-saturation of A (the smallest order
ideal containing A).

ρA is invertible since it is a composition of three invertible
operations:

antichains←→ order ideals←→ order filters←→ antichains

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

This map and its inverse have been considered with varying degrees of
generality, by many people more or less independently (using a variety of
nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron
and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and
Williams, who named it rowmotion.
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Example of antichain rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

 # #

#

 # −→

# # #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

# #  

#

#  ↰

# # #

#

# # −→

# # #

#

# # −→

   

#

  −→

# # #

 

# # ↰

# # #

#

# # ←→

 #  

#

# #

#  #



Panyushev’s conjecture (AST’s theorem)

Let ∆ be a (reduced irreducible) root system in Rn. (Pictures soon!)

Choose a system of positive roots and make it a poset of rank n by
decreeing that y covers x iff y − x is a simple root.

Theorem (Armstrong–Stump–Thomas [AST11], Conj. [Pan09])

Let O be an arbitrary ρA-orbit. Then

1
#O

∑
A∈O

#A =
n

2
.

In our language: the cardinality statistic is homomesic with respect to the
action of rowmotion on antichains in root posets.



Picture of root posets

Here are the main classes of posets included in Panyushev’s
conjecture.

Φ+(A3)
e1 − e4

e1 − e3 e2 − e4

e1 − e2 e2 − e3 e3 − e4

Φ+(B3) e1 + e2

e1 + e3

e1 e2 + e3

e1 − e3 e2

e1 − e2 e2 − e3 e3

Φ+(C3) 2e1

e1 + e2

e1 + e3 2e2

e1 − e3 e2 + e3

e1 − e2 e2 − e3 2e3

Φ+(D4) e1 + e2

e1 + e3

e1 − e4 e1 + e4 e2 + e3

e1 − e3 e2 − e4 e2 + e4

e1 − e2 e2 − e3 e3 − e4 e3 + e4

Figure: The positive root posets A3, B3, C3, and D4.

(Graphic courtesy of Striker–Williams.)



Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic”) f : S → K where K is a field of
characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a
constant c ∈ K such that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c.

In this case, we say that the function f is homomesic with average
c (also called c-mesic) under the action of τ on S .
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#

# # −→

#   

#
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 # #

#
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# # #
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−→ # # −→

# #  
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#

#  ↰

# # #

#

# # −→
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# # #

#
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 #  

#
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Checking the average cardinality for each orbit we find that

1 + 2 + 2 + 1 + 1 + 2 + 2 + 1
8

=
0 + 3 + 2 + 1

4
=

2 + 1
2

=
3
2
.



Orbits of rowmotion on antichains of [2]× [3]

ρA

2

ρA

1

ρA

1

Average cardinality: 6/5

ρA

1 1

..

ρA

1

ρA

2

ρA

2

Average cardinality: 6/5

ρA

1 0

..



Orbits of rowmotion on antichains of [2]× [2]

ρA

1

ρA

2

Average cardinality: 1

ρA

1 0

..

ρA

1

..
1

For antichain rowmotion on this poset, periodicity has been known
for a long time:

Theorem (Brouwer–Schrijver 1974)

On [a]× [b], rowmotion is periodic with period a+ b.

Theorem (Fon-Der-Flaass 1993)

On [a]× [b], every rowmotion orbit has length (a+ b)/d , some d
dividing both a and b.



Antichain rowmotion on [a]× [b]: cardinality is homomesic

For rectangular posets [a]× [b] (the type A minuscule poset, where
[k] = {1, 2, . . . , k}), the cardinality homomesy is easier to show than for
root posets.

Theorem (Propp, R.)

Let O be an arbitrary ρA-orbit in A([a]× [b]). Then
1

#O
∑
A∈O

#A =
ab

a+ b
.

7

6

5

4

3

2

1 8

9

10

11
12

-1+1-1-1-1 -1 -1 -1+1+1 +1 +1

(Graphic courtesy of Ben Young.)

The simplest proof uses an
non-obvious equivariant bijection
(the “Stanley–Thomas” word
[Sta09, §2]) between antichains in
[a]× [b] and binary strings, which
carries the ρA map to cyclic
rotation of bitstrings.
The figure shows the ST-word for a
3-element antichain in A([7]× [5]).
Red ↔ +1, while Black ↔ −1.

This bijection also allowed Propp–R.
to derive refined homomesy results
for fibers and antipodal points in
[a]× [b].
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Orbits of rowmotion on antichains of [2]× [3]: Refined homomesies

Look at the cardinalities across a positive fiber such as the one
highlighted in red.

ρA

1

ρA

0

ρA

1

Average: 3/5

ρA

0 1

..

ρA

1

ρA

1

ρA

1

Average: 3/5

ρA

0 0

..



Orbits of rowmotion on antichains of [2]× [3]: Refined homomesies

How about across a negative fiber such as the one highlighted in
red.

ρA

0

ρA

1

ρA

0

Average: 2/5

ρA

0 1

..

ρA

0

ρA

1

ρA

1

Average: 2/5

ρA

0 0

..



Antichains in [a]× [b]: fiber-cardinality is homomesic

For (i , j) ∈ [a]× [b], and A an antichain in [a]× [b], let 1i ,j(A) be 1
or 0 according to whether or not A contains (i , j).

Also, let fi (A) =
∑

j∈[b] 1i ,j(A) ∈ {0, 1} (the cardinality of the
intersection of A with the fiber {(i , 1), (i , 2), . . . , (i , b)} in [a]× [b]),
so that #A =

∑
i fi (A).

Likewise let gj(A) =
∑

i∈[a] 1i ,j(A), so that #A =
∑

j gj(A).

Theorem ([PrRo15])

For all i , j ,

1
#O

∑
A∈O

fi (A) =
b

a+ b
and

1
#O

∑
A∈O

gj(A) =
a

a+ b
.

The indicator functions fi and gj are homomesic under ρA, even
though the indicator functions 1i ,j aren’t.



Rowmotion on order ideals and order filters

We’ve already seen examples of Rowmotion on antichains ρA:

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

We can also define it as an operator ρ on J(P), the set of order
ideals (down-sets) of a poset P , by shifting the waltz beat by 1:

# #

ρJ :  # # −→

  

  

#   −→

# #

# #

#   −→

# #

# #

#   

  

Or as an operator on the order filters (up-sets) U(P), of P :

  

ρU : #   −→

# #

# #

#   −→

# #

# #

#   

  

  

 # #

# #



Rowmotion via Toggling
(Rowmotion in Slow

motion)



Toggling order filters

Cameron and Fond-Der-Flaass showed how to write rowmotion on
order filters (equivalently order ideals) as a product of simple
involutions called toggles.

Definition (Cameron and Fon-Der-Flaass 1995)

Let U(P) be the set of order filters of a finite poset P .
Let e ∈ P . Then the toggle corresponding to e is the map
Te : U(P)→ U(P) defined by

Te(U) =


U ∪ {e} if e ̸∈ U and U ∪ {e} ∈ U(P),
U \ {e} if e ∈ U and U \ {e} ∈ U(P),
U otherwise.

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom along a linear extension
of P gives rowmotion on order filters of P .



Toggling Order filters and order rowmotion
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on order filters of P .

Example
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Toggling Order filters and order rowmotion
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Rowmotion

This step-by-step toggling process gives the same result as the
three-step one mentioned earlier:

Start with an order filter, and

1 ∇: Take the minimal elements (giving an antichain)
2 ∆−1: Saturate downward (giving a order ideal)
3 Θ: Take the complement (giving an order filter)

Example

∇ ∆−1 Θ



Antichain toggling and rowmotion

Striker has generalized the notion of toggles relative to any class of
“allowed” subsets, not necessarily order filters.

Definition
Let e ∈ P . Then the antichain toggle corresponding to e is the
map τe : A(P)→ A(P) defined by

τe(A) =


A ∪ {e} if e ̸∈ A and A ∪ {e} ∈ A(P),
A \ {e} if e ∈ A,
A otherwise.

Let TogA(P) denote the toggle group of A(P) generated by the
toggles {τe | e ∈ P}.

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top along a linear
extension of P gives ρA, rowmotion on antichains of P .



Antichain toggling and rowmotion

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA,
rowmotion on antichains of P .

Example
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This gives the same result as the 3-step process

1 ∆−1: Saturate downward (giving a order ideal)
2 Θ: Take the complement (giving an order filter)
3 ∇: Take the minimal elements (giving an antichain)

Example

∆−1 Θ ∇



Toggle Group Isomorphisms

Let TogJ (P) := ⟨Tv : v ∈ P⟩, the order
toggle group. Let TogA(P) := ⟨τv : v ∈ P⟩,
the antichain toggle group. M. Joseph
constructed an explicit isomorphism between
these: Set ηe := Tx1Tx2 · · ·Txk , where
(x1, x2, . . . , xk) is a linear extension of the
subposet {x ∈ P : x < e}. Then
τ∗e := ηeTeη

−1
e mimics the action of τe .

A(P)

J (P)

A(P)

J (P)
∆−1

τ∗e

τe

∆−1

T(1,1) T(1,2) T(2,1) T(2,2) T(2,1) T(1,2) T(1,1)

∆−1 ∆−1
τ(2,2)



The piecewise-linear
realm

(Chain and Order
Polytopes)



Generalization to the piecewise-linear realm

Stanley defined some polytopes associated with posets [Sta86].

C(P) is the chain polytope of P , the set of f ∈ [0, 1]P such

that
n∑

i=1
f (xi ) ≤ 1 for all chains x1 < x2 < · · · < xn.

O(P) is the order polytope of P , the set of all
order-preserving labelings f ∈ [0, 1]P . Saying f is
order-preserving means f (x) ≤ f (y) when x ≤ y in P .

0.2

0.7 0

0.1 0 0.3

∈ C(P);

1

0.8 0.3

0.1 0 0.3

∈ O(P)

In particular, {0, 1}-labelings in C(P) ←→ A(P) (the vertices
of C(P)), and
{0, 1}-labelings in O(P) ←→ U(P) (the vertices of O(P)).



Generalizing toggling to the piecewise-linear realm

Definition (Einstein–Propp)

Set P̂ := P ∪ {0̂, 1̂}. The piecewise-linear order toggle
Tv : O(P)→ O(P) is (where f

(
0̂
)
= 0 and f

(
1̂
)
= 1 are fixed)

(
Tv (f )

)
(x) =

{
f (x) if x ̸= v
max
y⋖v

f (y) + min
y⋗v

f (y)− f (v) if x = v

“Midpoint reflection of f (v) in allowable interval
[
max
y⋖v

f (y),min
y⋗v

f (y)
]
.”

Definition (M. Joseph)

For v ∈ P , let MCv (P) denote the set of all maximal chains of P through
v . The piecewise-linear antichain toggle (or chain polytope toggle)
τv : C(P)→ C(P) is

(
τv (g)

)
(x) =

 1−max

{
k∑

i=1
g(yi )

∣∣∣∣ (y1, . . . , yk) ∈ MCv (P)

}
if x = v

g(x) if x ̸= v
.



Toggles on the chain polytope C(P)

As usual, To define τe : C(P)→ C(P), given g ∈ C(P) and e ∈ P ,
τe(g) can only differ from g at the value of e.(
τe(g)

)
(e) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0



Toggles on the chain polytope C(P)

To define τe : C(P)→ C(P), given g ∈ C(P) and e ∈ P , τe(g) can
only differ from g at the value of e.(
τe(g)

)
(e) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0

0.2 + 0 + 0.1 + 0.1 + 0.1 = 0.5



Toggles on the chain polytope C(P)

To define τe : C(P)→ C(P), given g ∈ C(P) and e ∈ P , τe(g) can
only differ from g at the value of e.(
τe(g)

)
(e) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0

0.2 + 0 + 0.1 + 0.2 + 0 = 0.5



Toggles on the chain polytope C(P)

To define τe : C(P)→ C(P), given g ∈ C(P) and e ∈ P , τe(g) can
only differ from g at the value of e.(
τe(g)

)
(e) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0

0.2 + 0 + 0.1 + 0.2 + 0.1 = 0.6



Toggles on the chain polytope C(P)

To define τe : C(P)→ C(P), given g ∈ C(P) and e ∈ P , τe(g) can
only differ from g at the value of e.(
τe(g)

)
(e) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0

0.3 + 0.1 + 0.2 + 0.1 = 0.7



Toggles on the chain polytope C(P)
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only differ from g at the value of e.(
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The birational realm



Detropicalizing from the piecewise-linear realm to the birational realm

Einstein and Propp showed how to lift of order-ideal toggling and
rowmotion on O(P) to the birational realm [EiPr13+]. To do this, we
replace max with + and + with multiplication. Under this dictionary

(
τv (g)

)
(v) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains v

}

becomes(
τv (g)

)
(v) =

C∑{
k∏

i=1
g(yi )

∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains v

}
whereas (

Tv (g)
)
(v) = max

y⋖v
f (y) + min

y⋗v
f (y)− f (v)

becomes ∑
y∈P̂,y⋖v

f (y)

f (v)
∑

y∈P̂,y⋗v

1
f (y)



Birational Antichain Rowmotion (BAR-motion)

Now we’ll define the birational antichain toggle corresponding to
e ∈ P .

Definition

For e ∈ P , and field K, let τe : KP → KP be defined as the
birational map that only changes the value at e in the following way.(

τe(g)
)
(e) =

C∑{
k∏

i=1
g(yi )

∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

Definition
BAR-motion (birational antichain rowmotion) is the birational
map obtained by applying the birational antichain toggles from the
bottom to the top.
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g =

z

x y

w

z

w(x + y)

x
y

C

wz(x + y)



BAR-motion on [2]× [2]

g =

z

x y

w

z

w(x + y)

x
y

C

wz(x + y)



BAR-motion on [2]× [2]

g =

z

x y

w

z

w(x + y)

x

w(x + y)

y

C

wz(x + y)



BAR-motion on [2]× [2]

g =

z

x y

w

z

w(x + y)

x

w(x + y)

y

C

wz(x + y)



BAR-motion on [2]× [2]

g =

z

x y

w

BAR(g) =

xy

x + y

w(x + y)

x

w(x + y)

y

C

wz(x + y)



BAR-motion on [2]× [2]

g =

z

x y

w

BAR2(g) =

w

C

wyz

C

wxz

z



BAR-motion on [2]× [2]

g =

z

x y

w

BAR3(g) =

C

wz(x + y)

z(x + y)

x

z(x + y)

y

xy

x + y



BAR-motion on [2]× [2]

g =

z

x y

w

BAR4(g) =

z

x y

w



Birational rowmotion: definition

For any v ∈ P , define the birational v-toggle as the partial
map Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =


f (w) , if w ̸= v ; ∑

u∈P̂;
u⋖v

f (u)

 · f (v) · ∑
u∈P̂;
u⋗v

f (u), if w = v

for all w ∈ P̂ .
Here (and in the following), m means m−1 whenever m ∈ K.

This is a partial map. If any of the inverses does not exist in K,
then Tv f is undefined!
Notice that this is a local change to the label at v ; all other
labels stay the same.
If K is commutative, then T 2

v = id (on the range of Tv ).



Birational rowmotion: definition

For any v ∈ P , define the birational v-toggle as the partial
map Tv : KP̂ 99K KP̂ defined by
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v = id (on the range of Tv ).



Birational rowmotion: definition

For any v ∈ P , define the birational v-toggle as the partial
map Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =


f (w) , if w ̸= v ; ∑

u∈P̂;
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then Tv f is undefined!
Notice that this is a local change to the label at v ; all other
labels stay the same.

If K is commutative, then T 2
v = id (on the range of Tv ).



Birational rowmotion: definition

For any v ∈ P , define the birational v-toggle as the partial
map Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =


f (w) , if w ̸= v ; ∑

u∈P̂;
u⋖v

f (u)

 · f (v) · ∑
u∈P̂;
u⋗v

f (u), if w = v

for all w ∈ P̂ .
Here (and in the following), m means m−1 whenever m ∈ K.
This is a partial map. If any of the inverses does not exist in K,
then Tv f is undefined!
Notice that this is a local change to the label at v ; all other
labels stay the same.
If K is commutative, then T 2

v = id (on the range of Tv ).



Birational Order Rowmotion: definition

We define (even noncommutative) birational rowmotion as
the partial map

R := Tv1 ◦ Tv2 ◦ · · · ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, . . . , vn) is a linear extension of P .
This is indeed independent on the linear extension, because:

Tv and Tw commute whenever v and w are incomparable (or
just don’t cover each other);
we can get from any linear extension to any other by switching
incomparable adjacent elements.



Birational Order Rowmotion: definition

We define (even noncommutative) birational rowmotion as
the partial map

R := Tv1 ◦ Tv2 ◦ · · · ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, . . . , vn) is a linear extension of P .
This is indeed independent on the linear extension, because:

Tv and Tw commute whenever v and w are incomparable (or
just don’t cover each other);
we can get from any linear extension to any other by switching
incomparable adjacent elements.



BOR-motion on [2]× [2]

Example when K is commutative:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)f

1

z

x y

w

1

1

(x+y)
z

x y

w

1

We are using BOR = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



BOR-motion on [2]× [2]

Example when K is commutative:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz y

w

1

We are using BOR = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



BOR-motion on [2]× [2]

Example when K is commutative:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,1)T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz

w(x+y)
yz

w

1

We are using BOR = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



BOR-motion on [2]× [2]

Example when K is commutative:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,0)T(0,1)T(1,0)T(1,1)f = BAR f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz

w(x+y)
yz

1
z

1

We are using BOR = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



BOR-motion orbit on a product of chains

Example: Iterating this procedure we get

(x+y)
z

BOR f = (x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

BOR2 f = 1
y

1
x

z
x+y ,

1
w

BOR3 f = yz
(x+y)w

xz
(x+y)w

xy
(x+y)w ,

z

BOR4 f = x y

w .



Orbits for BOR-motion and BAR-motion on [2]× [2]

Here are the full orbits of BOR and BAR on a generic labeling for
P = [2]× [2]:

z

x y

w

BOR7−→

x+y
z

w(x+y)
xz

w(x+y)
yz

1
z

BOR7−→

w(x+y)
xy

1
y

1
x

z
x+y

BOR7−→

1
w

yz
w(x+y)

xz
w(x+y)

xy
w(x+y)

↰

z

x y

w

BAR7−→

xy
x+y

w(x+y)
x

w(x+y)
y

C
w(x+y)z

BAR7−→

w

C
wyz

C
wxz

z

BAR7−→

C
w(x+y)z

(x+y)z
x

(x+y)z
y

xy
x+y

↰



Properties of BOR-motion

The order of BOR on [a]× [b] is a+ b [GrRo15b, Thm. 30]
The order of BOR on “graded rooted forests” with all leaves on
level n (indexed from 1) is finite and satisfies
ord(BOR) = ord(ρJ ) | LCM(1, 2, . . . , n + 1) [GrRo16].
Example: For P as shown,
ord(BOR) = ord(ρJ ) | LCM(1, 2, 3, 4) = 12.

P =

# #

# # #

# # # # #

NB: Most posets have ord(BOR) =∞, e.g., the Boolean
lattices B3 OR the two below:

# # #

# #

# # #

# # # #



Antipodal Homomesy for BOR-motion on rectangular posets

Antipodal reciprocity: [GrRo15b, Thm. 32] Antipodal points
in P = [a]× [b] satisfy:

f (a+ 1− i , b + 1− k) =
1(

BORi+k−1 f
)
(i , k)

.

z

x y

w

BOR7−→

x+y
z

w(x+y)
xz

w(x+y)
yz

1
z

BOR7−→

w(x+y)
xy

1
y

1
x

z
x+y

BOR7−→

1
w

yz
w(x+y)

xz
w(x+y)

xy
w(x+y)

↰



File Homomesy for BOR-motion

Musiker–R gave a formula for iterates of birational rowmotion in
terms of ratios of families of non-intersecting lattice paths (NILPs).
This allowed them to reprove the periodicity and antipodal
homomesy results, as well as the following refined homomesy, which
lifts a known one for ρJ [MR19].

Given a file F in [a]× [b],
a+b∏
k=1

∏
(i ,j)∈F

(
BORk f

)
(i , j) = 1. i.e., the

statistic
∏

(i ,j)∈F 1̃(i ,j) is birationally homomesic under BOR.

z

x y

w

BOR7−→

x+y
z

w(x+y)
xz

w(x+y)
yz

1
z

BOR7−→

w(x+y)
xy

1
y

1
x

z
x+y

BOR7−→

1
w

yz
w(x+y)

xz
w(x+y)

xy
w(x+y)

↰



File Homomesy on Minuscule Posets

These results generalize to Minuscule Posets, where “files” now means
“elements of the same color”, combinatorially by Rush &
Wang [RuWa15+], birationally by Okada [Oka21].

Classification of Minuscule Posets with Colorings (1/2)

(An, ϖr) (Bn, ϖn) (Cn, ϖ1)
(1 ≤ r ≤ n)

(Dn, ϖ1) (Dn, ϖn−1)
(Dn, ϖn)

Classification of Minuscule Posets with Colorings (1/2)

(An, ϖr) (Bn, ϖn) (Cn, ϖ1)
(1 ≤ r ≤ n)

(Dn, ϖ1) (Dn, ϖn−1)
(Dn, ϖn)

Classification of Minuscule Posets with Colorings (2/2)

(E6, ϖ1) (E7, ϖ7)
(E6, ϖ6)

(Pictures courtesy of S. Okada)



Properties of BAR-motion

The order of BAR on [a]× [b] is a+ b. This follows from
[GrRo15b] via our equivariant toggle-group isomorphisms.
The homomesy results for antichain cardinality in the
combinatorial ρA setting lift to this setting. Because. . .
We can lift the Stanley–Thomas word to this setting as an
equivariant surjection, cyclically rotating with BAR . It proves
homomesy, but not periodicity [JR21].

Here is the full orbit of BAR on a generic labeling for P = [2]× [2],
with ST-words.

z

x y

w

BAR7−→

(
wy , xz , C

wx ,
C
yz

)

xy
x+y

w(x+y)
x

w(x+y)
y

C
w(x+y)z

BAR7−→

(
C
yz ,wy , xz ,

C
wx

)

w

C
wyz

C
wxz

z

BAR7−→

(
C
wx ,

C
yz ,wy , xz

)

C
w(x+y)z

(x+y)z
x

(x+y)z
y

xy
x+y

↰

(
xz , C

wx ,
C
yz ,wy

)



The Noncommutative
realm



Lifting to NC toggles and NC Order rowmotion

Our earlier definition of birational toggling was already phrased to
work over any semiring K; write m for m−1. Set(
Tv (f )

)
(v) =

 ∑
u∈P̂,u⋖v

f (u)

 f (v)

 ∑ ∥

u∈P̂,u⋗v

f (u)

, where

∑ ∥

u∈P̂,u⋗v

f (u) =
∑

u∈P̂,u⋗v

f (u).

These “toggles” are no longer involutions (in general), but we
can define their inverses, called “elggots” Ev . Toggles and
Elggots for elements which do not cover each other commute
(among themselves and with each other).
As usual, we define Noncommutative Order Rowmotion by
NOR := Tx1Tx2 . . .Txn , where (x1, . . . , xn) is a linear extension
of P . Henceforth, R := NOR for simplicity.
To spice things up, we can also fix f (0̂) = a and f (1̂) = b to
see what happens.



NOR-motion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling
1

(2, 2)

(2, 1) (1, 2)

(1, 1)

0

b

z

x y

w

a

We have R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2) (using the linear
extension ((1, 1), (1, 2), (2, 1), (2, 2))).

That is, toggle in the order “top, left, right, bottom”.



NOR-motion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling
1

(2, 2)

(2, 1) (1, 2)

(1, 1)

0

b

z

x y

w

a

We have R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2) (using the linear
extension ((1, 1), (1, 2), (2, 1), (2, 2))).

That is, toggle in the order “top, left, right, bottom”.



NOR-motion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(2,2)f

b

z

x y

w

a

b

(x + y)zb

x y

w

a

We are using R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



NOR-motion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(2,1)T(2,2)f

b

z

x y

w

a

b

(x + y)zb

wx(x + y)zb y

w

a

We are using R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



NOR-motion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,2)T(2,1)T(2,2)f

b

z

x y

w

a

b

(x + y)zb

wx(x + y)zb wy(x + y)zb

w

a

We are using R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



NOR-motion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)T(1,2)T(2,1)T(2,2)f = Rf

b

z

x y

w

a

b

(x + y)zb

wx(x + y)zb wy(x + y)zb

aw · wx(x + y)zb + wy(x + y)zb

a

We are using R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



NOR-motion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)T(1,2)T(2,1)T(2,2)f = Rf

b

z

x y

w

a

b

(x + y)zb

wx(x + y)zb wy(x + y)zb

azb

a

We have used R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2) and simplified
the result.



NOR-motion: the rectangle case, example

Example: Iteratively apply R to a labelling of the
2× 2-rectangle.

Here is R0f :
b

z

x y

w

a

This displays the periodicity theorem for p = q = 2.

Note that this is similar to Kontsevich’s periodicity conjecture,
proved by Iyudu/Shkarin (arXiv:1305.1965).

http://arxiv.org/abs/1305.1965


NOR-motion: the rectangle case, example

Example: Iteratively apply R to a labelling of the
2× 2-rectangle.

Here is R1f :

b

(x + y)zb

wx(x + y)zb wy(x + y)zb

azb

a

This displays the periodicity theorem for p = q = 2.

Note that this is similar to Kontsevich’s periodicity conjecture,
proved by Iyudu/Shkarin (arXiv:1305.1965).

http://arxiv.org/abs/1305.1965


NOR-motion: the rectangle case, example

Example: Iteratively apply R to a labelling of the
2× 2-rectangle.

Here is R2f :

b

w (x + y) b

a · x + y · x (x + y) b a · x + y · y (x + y) b

abz · x + y · b

a

This displays the periodicity theorem for p = q = 2.

Note that this is similar to Kontsevich’s periodicity conjecture,
proved by Iyudu/Shkarin (arXiv:1305.1965).

http://arxiv.org/abs/1305.1965


NOR-motion: the rectangle case, example

Example: Iteratively apply R to a labelling of the
2× 2-rectangle.

Here is R3f :

b

awb

... abz · x + y · x + y · y · (x + y)wb

ab · x + y · wb

a

This displays the periodicity theorem for p = q = 2.

Note that this is similar to Kontsevich’s periodicity conjecture,
proved by Iyudu/Shkarin (arXiv:1305.1965).

http://arxiv.org/abs/1305.1965


NOR-motion: the rectangle case, example

Example: Iteratively apply R to a labelling of the
2× 2-rectangle.

Here is R4f :

b

abzab

... ab · x + y · x + y · y (x + y) (x + y) ab

abwab

a

This displays the periodicity theorem for p = q = 2.

Note that this is similar to Kontsevich’s periodicity conjecture,
proved by Iyudu/Shkarin (arXiv:1305.1965).

http://arxiv.org/abs/1305.1965


NOR-motion: the rectangle case, example

Example: Iteratively apply R to a labelling of the
2× 2-rectangle.

Here is R4f :

b

abzab

abxab abyab

abwab

a

(after nontrivial simplifications).

This displays the periodicity theorem for p = q = 2.

Note that this is similar to Kontsevich’s periodicity conjecture,
proved by Iyudu/Shkarin (arXiv:1305.1965).

http://arxiv.org/abs/1305.1965


NOR-motion: the rectangle case, example

Example: Iteratively apply R to a labelling of the
2× 2-rectangle.

Here is R4f :

b

abzab

abxab abyab

abwab

a

This displays the periodicity theorem for p = q = 2.

Note that this is similar to Kontsevich’s periodicity conjecture,
proved by Iyudu/Shkarin (arXiv:1305.1965).

http://arxiv.org/abs/1305.1965


NOR-motion: the rectangle case

Let p and q be two positive integers. Let K be a ring. Let P be
the p × q-rectangle poset: i.e.,

P := [p]× [q] , where [m] := {1, 2, . . . ,m} .
(The order on P is entrywise.)
Example: For p = 3 and q = 4, this is

(3, 4)

(3, 3) (2, 4)

(3, 2) (2, 3) (1, 4)

(3, 1) (2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1)

.

Let f ∈ KP̂ be a K-labelling. Let a = f (0) and b = f (1).

Periodicity theorem (Grinberg–R [GR22+])

If a and b are invertible and Rp+qf is well-defined, then(
Rp+qf

)
(x) = ab · f (x) · ab for each x ∈ P̂.

Reciprocity theorem (Grinberg–R [GR22+])

Let ℓ ∈ N. Let (i , j) ∈ P . If Rℓf is well-defined and ℓ ≥ i + j − 1,
then (

Rℓf
)
(i , j) = a · (Rℓ−i−j+1f ) (p + 1− i , q + 1− j)︸ ︷︷ ︸

=antipode of (i ,j) in P

· b.



NOR-motion: the rectangle case

Let p and q be two positive integers. Let K be a ring. Let P be
the p × q-rectangle poset: i.e.,

P := [p]× [q] , where [m] := {1, 2, . . . ,m} .
(The order on P is entrywise.)
Let f ∈ KP̂ be a K-labelling. Let a = f (0) and b = f (1).

Periodicity theorem (Grinberg–R [GR22+])

If a and b are invertible and Rp+qf is well-defined, then(
Rp+qf

)
(x) = ab · f (x) · ab for each x ∈ P̂.

Reciprocity theorem (Grinberg–R [GR22+])

Let ℓ ∈ N. Let (i , j) ∈ P . If Rℓf is well-defined and ℓ ≥ i + j − 1,
then (

Rℓf
)
(i , j) = a · (Rℓ−i−j+1f ) (p + 1− i , q + 1− j)︸ ︷︷ ︸

=antipode of (i ,j) in P

· b.



NOR-motion: the rectangle case

Let p and q be two positive integers. Let K be a ring. Let P be
the p × q-rectangle poset: i.e.,

P := [p]× [q] , where [m] := {1, 2, . . . ,m} .
(The order on P is entrywise.)
Let f ∈ KP̂ be a K-labelling. Let a = f (0) and b = f (1).

Periodicity theorem (Grinberg–R [GR22+])

If a and b are invertible and Rp+qf is well-defined, then(
Rp+qf

)
(x) = ab · f (x) · ab for each x ∈ P̂.

Note that ab · f (x) · ab is not generally conjugate to f (x).

Reciprocity theorem (Grinberg–R [GR22+])

Let ℓ ∈ N. Let (i , j) ∈ P . If Rℓf is well-defined and ℓ ≥ i + j − 1,
then (

Rℓf
)
(i , j) = a · (Rℓ−i−j+1f ) (p + 1− i , q + 1− j)︸ ︷︷ ︸

=antipode of (i ,j) in P

· b.



NOR-motion: the rectangle case

Let p and q be two positive integers. Let K be a ring. Let P be
the p × q-rectangle poset: i.e.,

P := [p]× [q] , where [m] := {1, 2, . . . ,m} .
(The order on P is entrywise.)
Let f ∈ KP̂ be a K-labelling. Let a = f (0) and b = f (1).

Periodicity theorem (Grinberg–R [GR22+])

If a and b are invertible and Rp+qf is well-defined, then(
Rp+qf

)
(x) = ab · f (x) · ab for each x ∈ P̂.

Reciprocity theorem (Grinberg–R [GR22+])

Let ℓ ∈ N. Let (i , j) ∈ P . If Rℓf is well-defined and ℓ ≥ i + j − 1,
then (

Rℓf
)
(i , j) = a · (Rℓ−i−j+1f ) (p + 1− i , q + 1− j)︸ ︷︷ ︸

=antipode of (i ,j) in P

· b.



NOR-motion: the rectangle case, example

Here are R0f ,R1f , . . . ,R4f for a generic f ∈ K ̂[2]×[2] again,
this time fully simplified and with the elements and labels
f (0) = a and f (1) = b suppressed:

z (x + y) zb

R0f = x y ; R1f = wx (x + y) zb wy (x + y) zb

w azb

w (x + y) b awb

R2f = ayb axb ; R3f = abzx + yywb abzx + yxwb

abzx + yb ab · x + y · wb
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Same-colored labels are related by reciprocity. Can you spot
some more?
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this time fully simplified and with the f (0) = a and f (1) = b
labels removed:

z (x + y) zb

R0f = x y ; R1f = wx (x + y) zb wy (x + y) zb

w azb

w (x + y) b awb

R2f = ayb axb ; R3f = abzx + yywb abzx + yxwb

abzx + yb ab · x + y · wb

Here are some more instances of reciprocity. (There are more.)



Noncommutative Antichain Rowmotion (NAR-motion)

• Joseph-R. [JR21] lifted birational antichain toggles to the
noncommutative setting, and proved that the bijection between the
NC order toggle group and the NC antichain toggle lifts as well
(again with toggles and elggots).

• We define NAR as usual (toggling from bottom to top), and
show that NAR and NOR have the same order.

• However, the Stanley-Thomas word lifts even to this setting,
as a tuple that cyclically rotates with the action of NAR.



NAR-motion and NC-Stanley–Thomas Word

The NAR-orbit for a generic labeling on P = [2]× [2] and
Stanley–Thomas words

z

x y

w

g = NAR4(g)

STg = (yw , zx ,C · w · x ,C · y · z)

(
x + y

)
x · (x + y) · w y · (x + y) · w

C · w · (x + y) · z
NAR(g)

STNAR(g) = (C · y · z , yw , zx ,C · w · x)

w

C · w · y · z C · w · x · z

z

NAR2(g)

STNAR2(g) = (C · w · x ,C · y · z , yw , zx)

C · w · (x + y) · z

z · (x + y) · x z · (x + y) · y
(
x + y

)
NAR3(g)

STNAR3(g) = (zx ,C · w · x ,C · y · z , yw)



Proof of Periodicity for NOR-motion

Fix p, q, P and f . Assume that Rℓf is well-defined for all
necessary ℓ. Let a = f (0) and b = f (1).

For any x ∈ P̂ and ℓ ∈ N, write

xℓ :=
(
Rℓf

)
(x) .

Thus, x0 = f (x) and 0ℓ = a and 1ℓ = b.
The definition of R yields

(Rf ) (v) =

(∑
u⋖v

f (u)

)
·f (v)·

∑
u⋗v

(Rf ) (u) for each v ∈ P.

(In both sums, u ranges over P̂ ; this is implied from now on.)
In other words,

v1 =

(∑
u⋖v

u0

)
· v0 ·

∑
u⋗v

u1 for each v ∈ P.
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Transition equation

We have just shown that

v1 =

(∑
u⋖v

u0

)
· v0 ·

∑
u⋗v

u1 for each v ∈ P.

Similarly,

vℓ+1 =

(∑
u⋖v

uℓ

)
·vℓ ·

∑
u⋗v

uℓ+1 for each v ∈ P and ℓ ∈ N.

So far, we have just rewritten our setup using the (more
convenient) xℓ :=

(
Rℓf

)
(x) notation.
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Simplifying the goal

We must prove:

periodicity: xp+q = ab · x0 · ab;
reciprocity: xℓ = a · yℓ−i−j+1 · b

if x = (i , j) and y = (p + 1− i , q + 1− j) .

Periodicity follows from reciprocity: Indeed, if x = (i , j) and
x ′ = (p + 1− i , q + 1− j), then

xp+q = a · x ′p+q−i−j+1 · b (by reciprocity)

= a · a · x0 · b · b (by reciprocity again)

= ab · x0 · ab.

Thus, it suffices to prove reciprocity.
Moreover, reciprocity in general follows from reciprocity for
ℓ = i + j − 1 (just apply it to Rk f instead of f otherwise).
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Paths, As and

A

s

A path shall mean a sequence (v0 ⋗ v1 ⋗ · · ·⋗ vk) of elements
of P̂ . We call it a path from v0 to vk .

For each v ∈ P and ℓ ∈ N, set

Av
ℓ := vℓ ·

∑
u⋖v

uℓ and

Av
ℓ :=

∑
u⋗v

uℓ · vℓ.

Also, set Av
ℓ =

Av
ℓ = 1 when v ∈ {0, 1}.

For any path p = (v0 ⋗ v1 ⋗ · · ·⋗ vk), set

Ap
ℓ := Av0

ℓ Av1
ℓ · · ·A

vk
ℓ and

Ap
ℓ :=

Av0
ℓ

Av1
ℓ · · ·

Avk
ℓ .

If u and v are elements of P̂ , set

Au→v
ℓ :=

∑
p is a path from u to v

Ap
ℓ and

Au→v
ℓ :=

∑
p is a path from u to v

Ap
ℓ .
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Path formulas

Path formulas:
(a) We have

uℓ =

A1→u
ℓ · b for each u ∈ P.

(b) We have

uℓ = Au→0
ℓ · a for each u ∈ P.

(c) We have

uℓ =

A(p,q)→u
ℓ · b for each u ∈ P.

(d) We have

uℓ = A
u→(1,1)
ℓ · a for each u ∈ P.

Proof idea: Each path 1→ u begins with the step 1 ⋗ (p, q).
Thus,

A1→u
ℓ =

A(p,q)→u
ℓ (since

A1
ℓ = 1). Hence, (c) follows

from (a).
Similarly, (d) follows from (b).
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(a) Rewrite the claim as

A1→u = buℓ.

Prove this by downwards induction on u.
Induction step: Given v ∈ P such that
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Since any path 1→ v passes through a unique u ⋗ v , we have
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∑
u⋗v

A1→u Av =
∑
u⋗v

buℓ

Av (by induction hypothesis)

= bvℓ (by definition of

Av ) , qed.

(c) We have

uℓ =

A(p,q)→u
ℓ · b for each u ∈ P.

(d) We have

uℓ = A
u→(1,1)
ℓ · a for each u ∈ P.

Proof idea: Each path 1→ u begins with the step 1 ⋗ (p, q).
Thus,

A1→u
ℓ =

A(p,q)→u
ℓ (since

A1
ℓ = 1). Hence, (c) follows

from (a).
Similarly, (d) follows from (b).



Path formulas

Path formulas:
(a) We have

uℓ =

A1→u
ℓ · b for each u ∈ P.

(b) We have

uℓ = Au→0
ℓ · a for each u ∈ P.

Proof idea: The ℓ is constant. Hence, we omit it, writing

Av for

Av
ℓ .

(a) Rewrite the claim as

A1→u = buℓ.
Prove this by downwards induction on u.

Induction step: Given v ∈ P such that

A1→u = buℓ for all u⋗ v .
Since any path 1→ v passes through a unique u ⋗ v , we have

A1→v =
∑
u⋗v

A1→u Av =
∑
u⋗v

buℓ

Av (by induction hypothesis)

= bvℓ (by definition of

Av ) , qed.

(c) We have

uℓ =

A(p,q)→u
ℓ · b for each u ∈ P.

(d) We have

uℓ = A
u→(1,1)
ℓ · a for each u ∈ P.

Proof idea: Each path 1→ u begins with the step 1 ⋗ (p, q).
Thus,

A1→u
ℓ =

A(p,q)→u
ℓ (since

A1
ℓ = 1). Hence, (c) follows

from (a).
Similarly, (d) follows from (b).



Path formulas

Path formulas:
(a) We have

uℓ =

A1→u
ℓ · b for each u ∈ P.

(b) We have

uℓ = Au→0
ℓ · a for each u ∈ P.

Proof idea: The ℓ is constant. Hence, we omit it, writing

Av for

Av
ℓ .

(a) Rewrite the claim as

A1→u = buℓ.
Prove this by downwards induction on u.
Induction step: Given v ∈ P such that

A1→u = buℓ for all u⋗ v .
Since any path 1→ v passes through a unique u ⋗ v , we have

A1→v =
∑
u⋗v

A1→u Av =
∑
u⋗v

buℓ

Av (by induction hypothesis)

= bvℓ (by definition of

Av ) , qed.

(c) We have

uℓ =

A(p,q)→u
ℓ · b for each u ∈ P.

(d) We have

uℓ = A
u→(1,1)
ℓ · a for each u ∈ P.

Proof idea: Each path 1→ u begins with the step 1 ⋗ (p, q).
Thus,

A1→u
ℓ =

A(p,q)→u
ℓ (since

A1
ℓ = 1). Hence, (c) follows

from (a).
Similarly, (d) follows from (b).



Path formulas

Path formulas:
(a) We have

uℓ =

A1→u
ℓ · b for each u ∈ P.

(b) We have

uℓ = Au→0
ℓ · a for each u ∈ P.

Proof idea: The ℓ is constant. Hence, we omit it, writing

Av for

Av
ℓ .
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Transition equation in A-
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Transition equation in A-

A

-form:

Av
ℓ+1 = Av

ℓ for each v ∈ P̂ and ℓ ∈ N.

Proof idea: Above we showed that

vℓ+1 =

(∑
u⋖v

uℓ

)
· vℓ ·

∑
u⋗v

uℓ+1.

Take reciprocals on both sides, multiply by
∑
u⋗v

uℓ+1 and rewrite

using

Av
ℓ+1 and Av

ℓ .
As a consequence of

Av
ℓ+1 = Av

ℓ , we have

Ap
ℓ+1 = Ap

ℓ for each path p and each ℓ ∈ N.

Hence,

Au→v
ℓ+1 = Au→v

ℓ for any u, v ∈ P̂ .
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As a consequence of
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ℓ , we have
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ℓ for each path p and each ℓ ∈ N.

Hence,
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ℓ for any u, v ∈ P̂ .



Reciprocity at (1, 1)

Now, for the bottommost element (1, 1) of P , we have

(1, 1)1 =

A(p,q)→(1,1)
1 · b (by path formula (c))

= A
(p,q)→(1,1)
0 · b

(
since

Au→v
ℓ+1 = Au→v

ℓ

)
= a · (p, q)0 · b (by path formula (d)) .

Thus, reciprocity is proved for i = j = 1.

What now?
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The case j = 1 suffices: part 1

We can simplify our goal one bit further. Consider the
“neighborhood” of an element of our rectangle P :

u v (rank k + 1)

m (rank k)

s t (rank k − 1)

(where the rank of an (i , j) ∈ P is defined to be i + j − 1).
Say we have shown (our “induction hypotheses”) that reciprocity
holds for each of s, t,m, u; that is, we have

sℓ = a · s ′ℓ−(k−1) · b, tℓ = a · t ′ℓ−(k−1) · b,
mℓ = a ·m′

ℓ−k · b, uℓ = a · u′ℓ−(k+1) · b
for all sufficiently high ℓ, where x ′ denotes the antipode of x
(that is, if x = (i , j), then x ′ = (p + 1− i , q + 1− j)).

Claim: Then, reciprocity also holds for v ; that is, we have
vℓ = a · v ′ℓ−(k+1) · b for all ℓ ≥ k + 1.
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The case j = 1 suffices: part 2

Proof idea. Fix ℓ ≥ k + 1, and compare the transition equations

mℓ = (sℓ−1 + tℓ−1) ·mℓ−1 · uℓ + vℓ and

m′
ℓ−k =

(
u′ℓ−k−1 + v ′ℓ−k−1

)
·m′

ℓ−k−1 · s ′ℓ−k + t ′ℓ−k

using the induction hypotheses mℓ = a ·m′
ℓ−k · b,

sℓ−1 = a · s ′ℓ−k · b, tℓ−1 = a · t ′ℓ−k · b,
mℓ−1 = a ·m′

ℓ−1−k · b, uℓ = a · u′ℓ−(k+1) · b,

noting that

u v t ′ s ′

m =⇒ m′

s t v ′ u′ .

This argument still works if s, t or u does not exist.
Thus, in order to prove reciprocity for all (i , j), it suffices (by
induction) to prove it in the case when j = 1.
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Where are we?

So we have proved reciprocity for i = j = 1, and we need to
prove it for j = 1.

The next case to try is (i , j) = (2, 1). We need to show that

(2, 1)2 = a · (p − 1, q)0 · b.

Using the path formulas (as in the case i = j = 1), we can boil
this down to

A
(p,q)→(2,1)
1 =

A(p−1,q)→(1,1)
1 .

Note the lack of rowmotion in this formula! The ℓ here is
constantly 1, so it is a property of a single labeling. Thus, we
drop the subscripts.
Our new goal: Prove that

A(p,q)→(2,1) =

A(p−1,q)→(1,1).
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The conversion lemma

More generally:
Conversion lemma:
Let u and u′ be two adjacent
elements on the top-right
edge of P (that is, u = (k, q)
and u′ = (k − 1, q)). Let d
and d ′ be two adjacent
elements on the bottom-left
edge of P (that is, d = (i , 1)
and d ′ = (i − 1, 1)). Then,

Au→d
ℓ =

Au′→d ′
ℓ for each ℓ ∈ N.

In short:

Au→d =

Au′→d ′ .

u
u′

d
d ′



Rowmotion begone, part 1

If we can prove the conversion lemma, we will obtain reciprocity
not only for (i , j) = (2, 1), but also for all (i , j) on the
bottom-left edge of P (that is, for the entire case j = 1),
because we can argue as follows:



Rowmotion begone, part 2

(i , 1)i =

A(p,q)→(i ,1)
i · b (by path formula (c))

= A
(p,q)→(i ,1)
i−1 · b

(
since

Au→v
ℓ+1 = Au→v

ℓ

)
=

A(p−1,q)→(i−1,1)
i−1 · b (by the conversion lemma)

= A
(p−1,q)→(i−1,1)
i−2 · b

(
since

Au→v
ℓ+1 = Au→v

ℓ

)
=

A(p−2,q)→(i−2,1)
i−2 · b (by the conversion lemma)

= · · ·

=

A(p−i+1,q)→(1,1)
1 · b (by the conversion lemma)

= A
(p−i+1,q)→(1,1)
0 · b

(
since

Au→v
ℓ+1 = Au→v

ℓ

)
= a · (p − i + 1, q)0 · b (by path formula (d)) .



Rowmotion begone, part 3

This proves reciprocity

(i , 1)ℓ = a · (p − i + 1, q)ℓ−i · b

for ℓ = i .

The case ℓ > i follows by applying this to Rℓ−i f instead of f .
Thus, we only need to prove the conversion lemma. We can
now drop all subscripts forever!
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Proving the conversion lemma: the intuition

Let us again look at the picture:

u
u′

d
d ′

We must prove Au→d =

Au′→d ′ .

How do we interpolate between paths u → d and paths
u′ → d ′ ?
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Proving the conversion lemma: path-jump-paths

We define a path-jump-path to be a sequence

p = (v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vk)

of elements of P , where the relation x ▶ y means “y is one
step down and some steps to the right of x” (that is, if
x = (r , s), then y = (r − k, s + k − 1) for some k > 0).
We say that this path-jump-path p has jump at i .

For any such path-jump-path p, we set

Ep := Av0Av1 · · ·Avi−1vivi+1

Avi+2

Avi+3 · · · Avk .
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p = (v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vk)

of elements of P , where the relation x ▶ y means “y is one
step down and some steps to the right of x” (that is, if
x = (r , s), then y = (r − k, s + k − 1) for some k > 0).
We say that this path-jump-path p has jump at i .
Example of a path-jump-path:

(The red edge is the jump.)

For any such path-jump-path p, we set

Ep := Av0Av1 · · ·Avi−1vivi+1

Avi+2

Avi+3 · · · Avk .
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We define a path-jump-path to be a sequence

p = (v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vk)

of elements of P , where the relation x ▶ y means “y is one
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We say that this path-jump-path p has jump at i .
For any such path-jump-path p, we set

Ep := Av0Av1 · · ·Avi−1vivi+1

Avi+2
Avi+3 · · · Avk .

(Here, we are omitting the ℓ subscripts – so vi means (vi )ℓ and
vi+1 means (vi+1)ℓ.)



Proving the conversion lemma: path-jump-paths

We define a path-jump-path to be a sequence

p = (v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vk)

of elements of P , where the relation x ▶ y means “y is one
step down and some steps to the right of x” (that is, if
x = (r , s), then y = (r − k, s + k − 1) for some k > 0).
We say that this path-jump-path p has jump at i .
For any such path-jump-path p, we set

Ep := Av0Av1 · · ·Avi−1vivi+1

Avi+2
Avi+3 · · · Avk .

Now, if k = rank u − rank (d ′), then

Au→d =
∑

p is a path-jump-path u→d ′

with jump at k−1

Ep,

since Ad = dd ′, and similarly

Au′→d ′ =
∑

p is a path-jump-path u→d ′

with jump at 0

Ep.



Proving the conversion lemma: moving the jump

So we need to show that∑
p is a path-jump-path u→d ′

with jump at k−1

Ep =
∑

p is a path-jump-path u→d ′

with jump at 0

Ep.

Reasonable to expect that∑
p is a path-jump-path u→d ′

with jump at i

Ep =
∑

p is a path-jump-path u→d ′

with jump at i+1

Ep

for each 0 ≤ i < k − 1.
This is indeed true and can be proved by a “local” argument
(rewriting two consecutive steps of the path).
This is similar to the “zipper argument” in lattice models. (Is
there a Yang–Baxter equation lurking?)
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Proving the conversion lemma: the civilized version, part 1

Modulo the details omitted, this finishes the proof of the
reciprocity theorem.

However, the path-jump-path argument is somewhat messy. We
can make it slicker by rewriting it in matrix notation:
Define three P × P-matrices A,

A

and U by

Ax ,y := Ax [x ⋗ y ] ,

A

x ,y :=

Ay [x ⋗ y ] ,

Ux ,y := xy [x ▶ y ] for all x , y ∈ P.

Here, [A] is the Iverson bracket (i.e., truth value) of a
statement A; the relation x ▶ y means “y is one step down
and some steps to the right of x” as before. And again, we are
omitting the ℓ subscripts, so xy actually means xℓyℓ.
Now, we claim that

AU = U

A

.
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Proving the conversion lemma: the civilized version, part 2

Now, we claim that AU = U

A

.
Indeed, this follows easily from the following neat lemma: If

u

v w

d

are four adjacent elements of P , then

w · Ad · d = u · Au · v and v · Ad · d = u · Au ·w .

(The u and d here are unrelated to the u and d from the
conversion lemma!)

From AU = U

A

, we easily obtain

A◦kU = U

A◦k for any k ∈ N,

where A◦k means the k-th power of a matrix A.
Setting k = rank u − rank d and comparing the (u, d ′)-entries
of both sides, we quickly obtain Au→d =

Au′→d ′ (since x ▶ d ′

holds only for x = d , and since u ▶ x holds only for x = u′).
This proves the conversion lemma again.
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Is that all? Part 1: Semirings

We consider these new proofs to be simpler and nicer than our
2014 one for the commutative case.

However, in some sense they are still imperfect.
Recall: Classical rowmotion is (a restriction of) birational
rowmotion on the tropical semifield.
Semifields are not rings! (No subtraction.)
In the commutative case, the theorems hold for semifields
(and, more generally, commutative semirings) because they hold
for fields and because they are “essentially” polynomial identities
(once you clear denominators).
This fails for noncommutative K !
Scary example (David Speyer, MathOverflow #401273): If x
and y are two elements of a ring such that x + y is invertible,
then

x · x + y · y = y · x + y · x .
But this is not true if “ring” is replaced by “semiring”!

https://mathoverflow.net/a/401273/
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Is that all? Part 2: The semiring question

Thus, we are left with a

Question:
Are the periodicity and reciprocity theorems still true if “ring” is
replaced by “semiring”? (I.e., we no longer require K to have a
subtraction.)

Note that the main hurdle is the argument that reduced the
general case to the j = 1 case. That argument used subtraction!
We have partial results, e.g., for p = q = 3 and for p = 2.
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Is that all? Part 3: Other posets

Other posets remain to be studied.

Conjecture:
Let P be the triangle-shaped poset ∆(p) or its reflection ∇ (p). Let
f ∈ KP̂ be a labelling such that Rpf exists. Let a = f (0) and
b = f (1). Then, for each x ∈ P̂ , we have

(Rpf ) (x) = ab · f
(
x ′
)
· ab,

where x ′ is the reflection of x across the y-axis.

#

# #

# # #

We have a similar conjecture for other kinds of triangles and
(still unproved even in the commutative case!) for trapezoids.

Question:
What other results like ours are known in the noncommutative case?
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#

do not have periodic behavior for noncommutative K.

Question:
What other results like ours are known in the noncommutative case?
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Johnson and Liu 2022

A recent preprint by Joseph Johnson and Ricky Ini Liu
(Birational rowmotion and the octahedron recurrence,
arXiv:2204.04255) reproves the “order p + q” theorem for
commutative K in a simpler way (besides doing a number of
other interesting things).

The main idea of their proof is to reduce birational rowmotion
to the octahedron recurrence, and prove the latter is periodic
using lattice paths and LGV.
We don’t know if the octahedron recurrence is well-behaved for
noncommutative K (too many options to check), but LGV
certainly is not available.
Lemma 4.1 in the Johnson-Liu preprint generalizes our
conversion lemma in the commutative case from single paths to
k-tuples of nonintersecting paths. We don’t know how this
could be done in the noncommutative case; it is unclear in what
order to multiply labels from different paths.

http://arxiv.org/abs/2204.04255


Johnson and Liu 2022

A recent preprint by Joseph Johnson and Ricky Ini Liu
(Birational rowmotion and the octahedron recurrence,
arXiv:2204.04255) reproves the “order p + q” theorem for
commutative K in a simpler way (besides doing a number of
other interesting things).
The main idea of their proof is to reduce birational rowmotion
to the octahedron recurrence, and prove the latter is periodic
using lattice paths and LGV.

We don’t know if the octahedron recurrence is well-behaved for
noncommutative K (too many options to check), but LGV
certainly is not available.
Lemma 4.1 in the Johnson-Liu preprint generalizes our
conversion lemma in the commutative case from single paths to
k-tuples of nonintersecting paths. We don’t know how this
could be done in the noncommutative case; it is unclear in what
order to multiply labels from different paths.

http://arxiv.org/abs/2204.04255


Johnson and Liu 2022

A recent preprint by Joseph Johnson and Ricky Ini Liu
(Birational rowmotion and the octahedron recurrence,
arXiv:2204.04255) reproves the “order p + q” theorem for
commutative K in a simpler way (besides doing a number of
other interesting things).
The main idea of their proof is to reduce birational rowmotion
to the octahedron recurrence, and prove the latter is periodic
using lattice paths and LGV.
We don’t know if the octahedron recurrence is well-behaved for
noncommutative K (too many options to check), but LGV
certainly is not available.

Lemma 4.1 in the Johnson-Liu preprint generalizes our
conversion lemma in the commutative case from single paths to
k-tuples of nonintersecting paths. We don’t know how this
could be done in the noncommutative case; it is unclear in what
order to multiply labels from different paths.

http://arxiv.org/abs/2204.04255


Johnson and Liu 2022

A recent preprint by Joseph Johnson and Ricky Ini Liu
(Birational rowmotion and the octahedron recurrence,
arXiv:2204.04255) reproves the “order p + q” theorem for
commutative K in a simpler way (besides doing a number of
other interesting things).
The main idea of their proof is to reduce birational rowmotion
to the octahedron recurrence, and prove the latter is periodic
using lattice paths and LGV.
We don’t know if the octahedron recurrence is well-behaved for
noncommutative K (too many options to check), but LGV
certainly is not available.
Lemma 4.1 in the Johnson-Liu preprint generalizes our
conversion lemma in the commutative case from single paths to
k-tuples of nonintersecting paths. We don’t know how this
could be done in the noncommutative case; it is unclear in what
order to multiply labels from different paths.

http://arxiv.org/abs/2204.04255


The Y-system connection

Zamolodchikov periodicity conjecture in type AA (proved
by A. Yu. Volkov, arXiv:hep-th/0606094v1): Let r and s be
positive integers. Let Yi , j , k be elements of a commutative ring
for i ∈ [r ] and j ∈ [s] and k ∈ Z. Assume that

Yi , j , k+1Yi , j , k−1 =
(1 + Yi+1, j , k)(1 + Yi−1, j , k)

(1 + 1/Yi , j+1, k)(1 + 1/Yi , j−1, k)

for all i , j , k , where sums involving “off-grid” points (e.g.,
1 + Y0, j , k) are understood as 1.
Then, Yi , j , k+2(r+s+2) = Yi , j , k for all i , j , k .

Observation (Max Glick and others, ca. 2015?): This is
equivalent to periodicity of birational rowmotion (Rp+q = 1) for
[p]× [q], where p = r + 1 and q = s + 1, when the ring is
commutative.
Disappointment: Zamolodchikov periodicity does not
generalize to noncommutative rings (no matter how we order
the five factors).

http://arxiv.org/abs/hep-th/0606094v1
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Summary and Take Aways

• Studying dynamics on objects in algebraic combinatorics is
interesting at a variety of levels: combinatorial, piecewise-linear,
birational, and noncommutative.

• All of our themes apply at all levels:
1) Periodicity/order, orbit structure; 2) Homomesy ; and 3)
Equivariant bijections.

• Maps which can be built out of toggling involutions seem
particularly fruitful.

• Combinatorial objects are often discrete “shadows” of
continuous PL objects, which in turn reflect algebraic dynamics. But
combinatorial tools are still frequently useful, even at higher level.

• The noncommutative level is challenging!

Slides for this talk are available online at: Google “Tom Roby”

Thanks very much for coming to this talk!
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Summary and Take Aways

Studying dynamics on objects in algebraic combinatorics is
interesting, particularly with regard to questions of
periodicity/order, orbit structure, homomesy, and equivariant
bijections.
Actions that can be built out of smaller, simpler actions (toggles
and whirls) often have interesting and unexpected properties.
Much more remains to be explored, perhaps for combinatorial
objects or actions that you work with for other reasons.

Slides for this talk will be available online at

Google “Tom Roby”.

Thanks very much for coming to this talk!
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