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Abstract

Abstract: Natural maps on sets of discrete combinatorial objects often
display interesting dynamics. Questions about periodicity and orbit
structure natural arise, requiring a variety of approaches for their solutions.
One particular phenomenon of interest is “homomesy”, where a statistic on
the set of objects has the same average for each orbit of an action. Along
with its intrinsic interest as a kind of hidden “invariant”, homomesy can be
used to help understand certain properties of the action.

Proofs of homomesy often lead one to develop tools that further our
understanding of the underlying dynamics, e.g., by finding an equivariant
bijection. Maps that can be decomposed as products of “toggling”
involutions or “whirling” maps are particularly amenable to this line of
analysis. This talk will discuss actions on order ideals, independent sets,
and other sets related to posets and graphs. The underlying shapes will
mostly be products of a chain with itself or with a 3-element V-shaped
poset, highlighting some recent work with Matthew Plante.
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Some themes in dynamical algebraic combinatorics

1 Periodicity/order;

2 Orbit structure;

3 Homomesy;

4 Equivariant bijections; and

5 Lifting from combinatorial to piecewise-linear and birational
settings.



Cyclic rotation of

binary strings
“Immer mit den einfachsten Beispielen anfangen.” —
David Hilbert



Cyclic rotation of binary strings

Let Sn,k be the set of length n binary strings with k 1s.
Let CR : Sn,k → Sn,k be rightward cyclic rotation.

Example
Cyclic rotation for n = 6, k = 2:

101000 7−→ 010100
CR

Periodicity is clear here. The map has order n = 6.
Orbit structure is very nice; every orbit size must divide n.
Homomesy? Need a statistic, first.
Equivariant bijection? No need.



Cyclic rotation of binary strings

An inversion of a binary string is a pair of positions (i , j) with i < j
such that there is a 1 in position i and a 0 in position j .

Example
Orbits of cyclic rotation for n = 6, k = 2:

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2
100010 5 000011 0
010001 3 100001 4
Average 4 Average 4 Average 4



Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic”) f : S → K where K is a field of
characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a
constant c ∈ K such that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c.

In this case, we say that the function f is homomesic with average
c (also called c-mesic) under the action of τ on S .



Homomesy

Theorem (Propp & R. [PrRo15, §2.3])

Let inv(s) denote the number of inversions of s ∈ Sn,k .

Then the function inv : Sn,k → Q is homomesic with average k(n−k)
2

with respect to cyclic rotation on Sn,k .

Proof.
Consider superorbits of length n. Show that replacing “01” with
“10” in a string s leaves the total number of inversions in the
superorbit generated by s unchanged (and thus the average since our
superorbits all have the same length).



Cyclic rotation of binary strings

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2
100010 5 000011 0
010001 3 100001 4
Average 4 Average 4 Average 4



Cyclic rotation of binary strings

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2 100100 6
100010 5 000011 0 010010 4
010001 3 100001 4 001001 2
Average 4 Average 4 Average 4



Cyclic rotation of binary strings

Example

Inversions
String String Change
101000 011000 -1
010100 001100 -1
001010 000110 -1
000101 000011 -1
100010 100001 -1
010001 110000 +5

There are other homomesic statistics as well:
Let χj(s) := sj , the jth bit of the string s. Can you see why this is
homomesic?



Coxeter Toggling

Independent Sets

of Path Graphs



Independent Sets of a Path Graph

Definition
An independent set of a graph is a subset of the vertices that does
not contain any adjacent pair.

Let In denote the set of independent sets of the n-vertex path graph
Pn. We usually refer to an independent set by its binary
representation.

Example
is written 1010100.

In this case, In refers to all binary strings with length n that do not
contain the factor 11.



Toggles

Definition (Striker - generalized earlier concept of Cameron
and Fon-der-Flaass)

For 1 ≤ i ≤ n, the map τi : In → In, the toggle at vertex i is
defined in the following way. Given S ∈ In:

if i ∈ S , τi removes i from S ,
if i ̸∈ S , τi adds i to S , if S ∪ {i} is still independent,
otherwise, τi (S) = S .

Formally,

τi (S) =


S \ {i} if i ∈ S
S ∪ {i} if i ̸∈ S and S ∪ {i} ∈ In
S if i ̸∈ S and S ∪ {i} ̸∈ In

.



Toggles

Proposition

Each toggle τi is an involution, i.e., τ2
i is the identity. Also, τi and τj

commute if and only if |i − j | ≠ 1.

Definition
Let φ := τn ◦ · · · ◦ τ2 ◦ τ1, which applies the toggles left to right.

Example

In I5, φ(10010) = 01001 by the following steps:

10010 τ17−→ 00010 τ27−→ 01010 τ37−→ 01010 τ47−→ 01000 τ57−→ 01001.



Order & Orbits

The order of this action grows quite fast as n increases and is
difficult to describe in general. It is the LCM of the orbit sizes,
which are not all divisors of some small number (relative to n):
2, 3, 6, 15, 24, 231, 210, 1989, 240, 72105, 18018, 3354725, . . .
For n = 6 the three orbits have sizes 3, 7, 11, giving order
LCM(3,7,11)= 231.
The number of orbits appeared to be OEIS A000358 (“Number
of binary necklaces of length n with no subsequence 00”) , but
we didn’t understand why at first.
This means that this action is unlikely to exhibit interesting
Cyclic Sieving.
But we can still find homomesy.



Homomesy

Here is an example φ-orbit in I7, containing 1010100. In this case,
φ10(S) = S .

1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1
Total: 4 2 3 2 3 2 4



1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1
Total: 4 2 3 2 3 2 4

Theorem (Joseph–R. [JR18])

Define χi : In → {0, 1} to be the indicator function of vertex i .

For 1 ≤ i ≤ n, χi − χn+1−i is 0-mesic on φ-orbits of In.

Also 2χ1 + χ2 and χn−1 + 2χn are 1-mesic on φ-orbits of In.



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Idea of the proof that χi − χn+1−i is 0-mesic: Given a 1 in an “orbit board”, if
the 1 is not in the right column, then there is a 1 either

2 spaces to the right,
or 1 space diagonally down and right,

and never both.



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Idea of the proof that χi − χn+1−i is 0-mesic: This allows us to partition the
1’s in the orbit board into snakes that begin in the left column and end in the
right column.

This technique is similar to one used by Shahrzad Haddadan to prove homomesy
in orbits of an invertible map called “winching” on k-element subsets of
{1, 2, . . . , n}.



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Idea of the proof that χi − χn+1−i is 0-mesic: Each snake corresponds to a
composition of n − 1 into parts 1 and 2. Also, any snake determines the orbit!

1 refers to 1 space diagonally down and right
2 refers to 2 spaces to the right



S 1 0 1 0 1 0 0 1 0 1
φ(S) 0 0 0 0 0 1 0 0 0 0
φ2(S) 1 0 1 0 0 0 1 0 1 0
φ3(S) 0 0 0 1 0 0 0 0 0 1
φ4(S) 1 0 0 0 1 0 1 0 0 0
φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Red snake composition: 221121
Purple snake composition: 211212
Orange snake composition: 112122
Green snake composition: 121221
Blue snake composition: 212211

Brown snake composition: 122112



More Consequences of Snakes

Besides homomesy, this snake representation can be used to explain
a lot about the orbits (particularly the orbit sizes, i.e. the number of
independent sets in an orbit).

When n is even, all orbits have odd size.
“Most” orbits in In have size congruent to 3(n − 1) mod 4.
The number of orbits of In (OEIS A000358)
And much more...

Using elementary Coxeter theory, it’s possible to extend our main
theorem to other “Coxeter elements” of toggles. We get the same
homomesy if we toggle exactly once at each vertex in any order.

Hanaoka & Sadahiro have generalized the “palindromic” homomesy
to the case of “m-independent sets”, leading them to an interesting
variation of bitstring rotation [HS19+]. Video lecture from
BIRS-DAC (Kelowna) is available at https://www.birs.ca/
events/2021/5-day-workshops/21w5514/videos

https://www.birs.ca/events/2021/5-day-workshops/21w5514/videos
https://www.birs.ca/events/2021/5-day-workshops/21w5514/videos


Rowmotion on Order

Ideals of a Poset



Rowmotion: an invertible operation on order ideals

We define the (cyclic) group action of rowmotion on the set of
order ideals J (P) via the map Row : J (P) → J (P) given by the
following three-step process.

Start with an order ideal, and

1 Θ: Take the complement (giving an order filter)
2 ∇: Take the minimal elements (giving an antichain)
3 ∆−1: Saturate downward (giving a order ideal )

# #

ρJ :  # # −→

  

  

#   −→

# #

# #

#   −→

# #

# #

#   

  

This map and its inverse have been considered with varying degrees of
generality, by many people more or less independently (using a variety of
nomenclatures and notations): Duchet, Brouwer and Schrijver, Cameron
and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and Striker and
Williams, who named it rowmotion.



Dynamical properties of rowmotion: cardinality is homomesic

Theorem (Brouwer–Schrijver 1974)

On [a]× [b], rowmotion is periodic with period a+ b.

Theorem (Fon-Der-Flaass 1993)

On [a]× [b], every rowmotion orbit has length (a+ b)/d , some d
dividing both a and b.

Theorem (Propp, R.)

Let O be an arbitrary rowmotion orbit in J ([a]× [b]). Then

1
#O

∑
I∈O

#I =
ab

2
.



Ideals in [a]× [b]: the case a = b = 2

We have an orbit of size 2 and an orbit of size 4:

2 2

0 1 3 4

Within each orbit, the average order ideal has cardinality ab/2 = 2.



Example in lattice cell form

Viewing the elements of the poset as squares below, we would map:

Area = 8

X X
−→

Area = 10

X

X X



Rowmotion on [4]× [2]: Orbit 1

1

Area = 0

2

Area = 1

3

Area = 3

4

Area = 5

5

Area = 7

6

Area = 8

(0+1+3+5+7+8) / 6 = 4



Rowmotion on [4]× [2]: Orbit 2

1

Area = 2

2

Area = 4

3

Area = 6

4

Area = 6

5

Area = 4

6

Area = 2

(2+4+6+6+4+2) / 6 = 4



Rowmotion on [4]× [2]: Orbit 3

1

Area = 3

2

Area = 5

3

Area = 4

4

Area = 3

5

Area = 5

6

Area = 4

(3+5+4+3+5+4) / 6 = 4



Toggling order ideals

Cameron and Fond-Der-Flaass showed how to write rowmotion on
order ideals (equivalently order filters) as a product of simple
involutions called toggles.

Definition (Cameron and Fon-Der-Flaass 1995)

Let J (P) be the set of order ideals of a finite poset P .
Let e ∈ P . Then the toggle corresponding to e is the map
Te : J (P) → J (P) defined by

Te(U) =


U ∪ {e} if e ̸∈ U and U ∪ {e} ∈ J (P),
U \ {e} if e ∈ U and U \ {e} ∈ J (P),
U otherwise.

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom along a linear extension
of P gives rowmotion on order ideals of P .



Toggling order ideals

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom on P gives rowmotion
on order ideals of P .

Example
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Toggling order ideals
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Toggling order ideals

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom on P gives rowmotion
on order ideals of P .

Example



Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρ-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 4 + 3 + 1 + 2 + 4 + 3

8
=

5
2
;

0 + 3 + 5 + 6
4

=
7
2
;

2 + 1
2

=
3
2
. Darn!



Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρ-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average rank-alternating cardinality for each orbit we find:
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

1 + 2 + 2 + 1
4

=
2 + 1

2
=

3
2

Yay!



Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan)

Let P be the root poset of type An. If we assign an element x ∈ P
weight wt(x) = (−1)rank(x), and assign an order ideal I ∈ J (P)
weight f (I ) =

∑
x∈I wt(x), then f is homomesic under rowmotion

and promotion, with average n/2.



Ideals in [a]× [b]: the case a = b = 2

We have an orbit of size 2 and an orbit of size 4:

2 2

0 1 3 4

Within each orbit, the average order ideal has cardinality ab/2 = 2.



Ideals in [a]× [b]: file-cardinality is homomesic

1 1 0 0 1 1

0 0 0 0 1 0 1 1 1 1 2 1

Within each orbit, the average order ideal has

1/2 of a violet element, 1 red element, and 1/2 of a brown element.



Ideals in [a]× [b]: file-cardinality is homomesic

For 1 − b ≤ k ≤ a− 1, define the kth file of [a]× [b] as

{(i , j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, i − j = k}.

For 1 − b ≤ k ≤ a− 1, let hk(I ) be the number of elements of I in
the kth file of [a]× [b], so that #I =

∑
k hk(I ).

Theorem (Propp, R.)

For every ρ-orbit O in J([a]× [b]):

• 1
#O

∑
I∈O

hk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.

• 1
#O

∑
I∈O

#I =
ab

2
.



Some homomesies for (order-ideal) rowmotion on fence posets

Periodicity and homomesy for rowmotion on fence posets was
explored in recent work of Elizalde–Plante–Roby–Sagan [EPRS].

Average:1 Average:1 Average:1

Average:1 Average:12 Average:1



One orbit of rowmotion on a fence poset, highlighting a homomesy

ρ−→ ρ−→

ρ−→ ρ−→ ρ−→

ρ−→ ρ−→ ρ−→

ρ−→

Checking the statistic we see 13−3
10 = 1



Whirling on posets



Definition of whirling on posets

Let Fk be the set of order-reversing functions from P to
{0, 1, 2, . . . , k}.

P =

3 2
2

1 0
∈ F3(P)

Definition ([JPR18])

Let P be a poset. For f ∈ Fk(P) and x ∈ P define
wx : Fk(P) → Fk(P), called the whirl at x , as follows: repeatedly
add 1 (mod k + 1) to the value of f (x) until we get a function in
Fk(P). This new function is wx(f ).

3 2
2

1 0
→

3 2
3

1 0
→

3 2
0

1 0
→

3 2
1

1 0
∈ F3(P)



Equivariant bijection between whirling and rowmotion

Now let {x1, x2, . . . , xn} be any linear extension of P (with #P = n.)
It is easy to show that wx and wy commute when x , y ∈ P are
incómparable. Thus the whirling operator w := wx1wx2 · · ·wxn is
well-defined (whirling each poset element from top to bottom).

Theorem (Plante)

There is an equivariant bijection between Fk (P) and J (P × [k])
which sends w to ρJ .

Example (J ([3]× [4]) to F4([3]))

−→
4

1
0

The number of order ideal elements in each fiber is recorded as an
order-reversing function on [3].



Product of two chains orbit bijection example

4
1

0

2
2

1

3
2

2

4
3

0

0
01 2

2 3 4

0 1 2
2 3 4

4

0 1 2
2
2 34

4
4

1

2
2

2

3
0

0



Product of two chains snake homomesy Revisited

Theorem (Plante)

Let w denote the whirling operator on order-reversing functions
Fk([m]). Consider a superorbit board of w with length k +m.

1 The board can be partitioned into m snakes of length k +m
under the following rules:

1 Start at zero in the top row.
2 Stay in a row until the value does not increase then move down.
3 End once the snake contains k in the bottom row.

2 Let (α1, α2, . . . , αm) be the segments of a snake α, that is, αi

is the number of blocks of the snake in row i . Each snake in the
board has segments which are a cyclic rotation of
(α1, α2, . . . , αm).

3 The average sum of values along a snake is k(m + k)/2.

An orbit board of (0, 1, 4) ∈ F4([3]):
0
01 2

2 3 4

0 1 2
2 3 4

4

0 1 2
2
2 34



Orbits of a product of two chains

[3]× [3] =

The 4 orbits of F3([3]) under the action of w .

0
0
0 1 2 3

0
0 1 2 3

3

0 1 2 3
3
3

0
0 1

1 2 3

0 1
1 2 3

33

0 1 2
2
2

0 1
1
1 2 3

0
0 1 2

2 3

0 1 2
23

3

0 1
12

2 3



Orbits of a product of two chains

[3]× [3] =

The 4 orbits of F3([3]) under the action of w .

0
0
0 1 2 3

0
0 1 2 3

3

0 1 2 3
3
3

0
0 1

1 2 3

0 1
1 2 3

33

0 1 2
2
2

0 1
1
1 2 3

0
0 1 2

2 3

0 1 2
23

3

0 1
12

2 3



Orbits of a product of two chains

[3]× [3] =

The 4 orbits of F3([3]) under the action of w .

0
0
0 1 2 3

0
0 1 2 3

3

0 1 2 3
3
3

0
0 1

1 2 3

0 1
1 2 3

33

0 1 2
2
2

0 1
1
1 2 3

0
0 1 2

2 3

0 1 2
23

3

0 1
1 2

2 3

0 1
1 2

2 3

0 1
12

2 3



The V × [k] poset



The poset V × [k]

Let V be the three-element partially ordered set with Hasse
diagram

ℓ

c

r

The poset of interest is V (k) := V × [k]

ℓ1

c1

r1

ℓ2

c2

r2

...
...

...

ℓk

ck

rk



Order-ideal rowmotion on V × [k]

ρ−→ ρ−→ ρ−→ ρ−→ ρ−→

ρ−→ ρ−→ ρ−→ ρ−→ ρ−→

Theorem (Plante)

Order ideals of V (k) are reflected about the center chain after k + 2
iterations of ρ, and furthermore, the order of ρ on order ideals of
V (k) is 2(k + 2).



Map to order-reversing functions on V

ℓ

c

r

1 Define Fk(V) = {(ℓ, c , r) ∈ {0, . . . , k}3 : ℓ, r ≤ c}.
2 Define ϕ : J (V(k)) → Fk(V) by

ϕ(I ) =
(∑

χℓi ,
∑

χci ,
∑

χri

)
.

ϕ


 = (0, 3, 3) ↔

0
3

3



Example of whirling V

We whirl the example
ℓ

c

r
first at ℓ, r , then c .

Start with (0, 2, 2) ∈ F2(V).

0

2

2
wℓ−→

1

2

2

1

2

2
wr−→

1

2

0

1

2

0
wc−→

1

0

0
→

1

1

0



Example of rowmotion orbit with triples

0
4

3

ρ−→

1
4

4

ρ−→

2
2

0

ρ−→

0
4

1

ρ−→

1
4

2

ρ−→

2
3

3

3
4

0

ρ−→

4
4

1

ρ−→

0
2

2

ρ−→

1
3

0

ρ−→

2
4

1

ρ−→

3
3

2



Equivariant bijection example

Alternatively we may define w on (ℓ, c , r) ∈ Fk(V) as the process:

1 ℓ → ℓ+ 1 unless ℓ = c , then ℓ → 0.
2 Repeat step 1 with r instead of ℓ.
3 c → c + 1 unless c = k , then c → max(ℓ, r).

Corollary
The map ϕ is an equivariant bijection that sends ρ to w .

J (V(k))

Fk(V)

J (V(k))

Fk(V)

ρ

w

ϕ ϕ



Periodicity

Theorem (Plante)

Order ideals of V (k) are reflected about the center chain after k + 2
iterations of ρ, and furthermore, the order of ρ on order ideals of
V (k) is 2(k + 2).

Direct inspection of order-reversing functions on V as tuples gives a
straightforward proof of periodicity.



Homomesy

Theorem (Plante)

For the action of rowmotion on order ideals of V(k):
1 The statistic χℓ1 + χr1 − χck is 2(k−1)

k+2 -mesic.

+1
0
+1

0
0

0

... ...

...

0
−1

0

.

2 The statistic χri − χℓi is 0-mesic
+1

0
−1

for each

i = 1, . . . , k , where χx is the indicator function.



Center Seeking Snakes

We decompose the orbit board into 6 snakes of length k + 2. Or 2
two-tailed snakes if the order-reversing functions are symmetric.
Recall that snakes start at the top of a poset and move down. Since
the least element of V is in the center, we call these snakes,
center-seeking snakes.

1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0

0 0
1 1
2 2
3 33

40 0
1 11

2
3
4



Sketch of Proof of Homomesy

∑
χℓ1 + χr1 − χck

= (2(k+2)−3)+(2(k+2)−3)−6

Thus we see

4(k + 2)− 12
2(k + 2)

=
2k − 2
k + 2

.

1
2
3
4 4

0
1
2
33

4
0
1
2 2

3
4

0
1
2
3
44

0
1
2
3 3

4
0
1

22
3
4

0



2(k + 2)



Another Potential Homomesy

There is another nice looking homomesy not yet proved. Let
Fi = χℓi + χri + χci−1 , which has the following flux-capacitor shape
in V(k).

...

...

...

...

...

...

F3 − F2

Conjecture
The difference Fi − Fk−i+1 is homomesic.



Flux Capacitor??

https://www.youtube.com/watch?v=VcZe8_RZO8c

https://www.youtube.com/watch?v=VcZe8_RZO8c


Whirling Proper

k-Colorings of the

Path and Cycle Graph



Proper k-Colorings

Let G = (V ,E ) be a graph with Kk(G ) being the set of proper
k-colorings κ : V → [k].

All Proper 3-Colorings of

1 2 1 1 2 3 1 3 1 1 3 2

2 1 2 2 1 3 2 3 1 2 3 2

3 1 2 3 1 3 3 2 1 3 2 3

Definition (JPR18, Def 2.1)

Define wv : K (G ) → K (G ) (whirl at v) by incrementing the color of
vertex v by 1 modulo k repeatedly until arriving at a proper
k-coloring.

wb

(
3 2 3
a b c

)
= 3 1 3

a b c



Whilring k-Colorings

Let Pn be the path graph with n vertices, and let Cn be the cycle
graph with n vertices.

P4 = C4 =

We set V = [n] labeled from left to right and consider the action
w = wn . . .w1. Thus the proper k-colorings of Pn are maps
κ : [n] → [k] such that κ(i − 1) ̸= κ(i) ̸= κ(i + 1) (modulo n if we
are on a cyclic graph.) We also represent colorings with [k]-words of
length n.

2 1 2 → 212

w(212) = w3w2w1(212) = w3w2(312) = w3(312) = 313



Homomesies for w on Paths

Fix any color j ∈ [3]. Set χi to be the indicator function for when
vertex i is colored with j .

Theorem (Plante)

Under the action of w on K3(Pn),
1 χi − χn+1−i is 0-mesic, and
2 2χ1 + χ2 is 1-mesic and χn−1 + 2χn is 1-mesic.

Orbit from K3(Pn):

1 3 2 3 1 2 1
2 1 2 3 1 3 2
3 1 2 3 2 1 3
2 3 1 3 2 1 2
1 2 1 3 2 3 1
3 2 1 3 1 2 3



Difference Vector

Definition
The difference vector, d of a proper 3-coloring of Pn is the string of
n − 1 ’s and ’s depending on whether the coloring increases by 1
or decreases by 1 respectively from left to right.

1 2 3 2
3 1 3 1
2 1 2 3
3 1 2 1
2 3 2 3
1 3 1 2
2 3 1 3
1 2 1 2
3 2 3 1



Affect of w on the Difference Vector

Lemma
If κ ∈ K3(Pn) or κ ∈ K3(Cn) with difference vector d ,

1 If i is an interior vertex (degree two), then the difference vector
of wi (κ) is d but with di−1 and di swapped.

2 If i is an exterior vertex (degree one) and i = 1 (resp. i = n),
then the difference vector of wi (κ) is d but with d1 (resp.
dn−1) changed from to or vise versa.

Here is an example where w acts on κ one whirl at a time with the
difference vector updated at each step.

1 2 1 2 3 1
w1 3 2 1 2 3 1
w2 3 2 1 2 3 1
w3 3 2 3 2 3 1
w4 3 2 3 1 3 1
w5 3 2 3 1 2 1
w6 3 2 3 1 2 3



Implication of Rotation of Difference Vector

Proposition
If κ ∈ K3(Pn), d is the difference vector of κ, and τ is leftward
cyclic-shift on strings of ’s and ’s, then the difference vector
w(κ) is τ(d).

1 2 1 3 1 2 w−→ 3 2 1 2 3 1
τ−→

Theorem (Plante)

Let κ ∈ K3(Pn) have difference vector d . Let ℓ be the smallest
natural number such that w ℓ(κ) = κ, t be the smallest natural
number such that τ t(d) = d .

1 If the sum of d is 0, then ℓ = t.
2 Otherwise ℓ = 3t.



Homomesy for Cycle Graphs

Theorem (Plante)

Fix any color j ∈ [3]. Set χi := χi ,j . Under the action of w on
K3(Cn),

1 If 3 ̸ |n, then χi is 1/3-mesic, and
2 If 3|n, then χ3a+i − χ3b+i is 0-mesic for i ∈ [3] and

0 ≤ a, b ≤ n
3 − 1.

Similarly the difference vector, d , of a proper 3-coloring of Cn is the
same as the difference vector of Pn but with an extra or for the
difference between the last color and the first color

3 2 1 2 1

We prove the theorem using a similar argument to the one for Path
Graphs.
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Summary and Take Aways

Studying dynamics on objects in algebraic combinatorics is
interesting, particularly with regard to questions of
periodicity/order, orbit structure, homomesy, and equivariant
bijections.
Actions that can be built out of smaller, simpler actions (toggles
and whirls) often have interesting and unexpected properties.
Much more remains to be explored, perhaps for combinatorial
objects or actions that you work with for other reasons.

Slides for this talk will be available online at

Google “Tom Roby”.

Thanks very much for coming to this talk!
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