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The Intermediary Game on Permutations

We view permutations in Sn as words: a1a2 · · · an, e.g.,
314652 ∈ S6, and allow moves of the following type:

If ai < aj < ak or ai > aj > ak for some i < j < k, then we may
interchange (transpose, swap) ai and ak .
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The Intermediary Game on Permutations

We view permutations in Sn as words: a1a2 · · · an, e.g.,
314652 ∈ S6, and allow moves of the following type:

If ai < aj < ak or ai > aj > ak for some i < j < k, then we may
interchange (transpose, swap) ai and ak .

EG: May we interchange 4 and 2 above? NO.

EG: May we interchange 3 and 6 above? YES, to get 614352

Question: Can we obtain the identity permutation, 123 · · · n, from
any given permutation?

Try this now with one of the following permutations (working with
a partner encouraged):

314652 124356 213456



Intermediary Game Examples

213456 124356 314652
243156 624351 514632
243651 654321 512634
643251 634521 542631
143256 631524 245631
123456 136524 265431

436521 263451
436125 213456
136425 . . .
156423
153426
123456



Equivalence Relation

The transitive closure of the relations defined by these moves
defines an equivalence relation on the set of permutations. We are
interested in the sizes of and possible characterizations of the
resulting equivalence classes.

More concretely, we can think of this game as creating a graph,
whose vertex set is Sn, and with edges between any two
permutations connected by a legal move. We are interested in
questions about the connected components of this graph.
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n = 3, 4, 5, 6

What happens with our game in small cases?

For n = 3 it’s clear that the only legal move is 123↔ 321, so there
are 5 distinct equivalence classes under this relation.

For n = 4 we get ten equivalence classes including
{1234, 3214, 1432, 4321}.

For n = 5 we get 3 equivalence classes, and the class containing
the identity contains 24 elements.

For n ≥ 6 we get a single equivalence class (the “fully mixed”
case), which of course contains the identity.



A Bar Game

This leads to the following bar game:

Demonstrate your skill at obtaining the identity from random
permutations in S6 using only the legal moves.

Bet someone that they won’t be able to do it.

When they get stuck (quite likely), take pity on them and give
them a “easier” permutation in S5.

There’s an 80% chance that a randomly chosen σ ∈ S5 is
NOT legally obtainable by this set of moves.

Compare your winnings with the expected value you computed
before going to the bar. . .



Basic questions

This example illustrates the basic questions we will consider, not
just for this game, but for ones with other sets of rules P:

A Compute the number of equivalence classes #Classes?(n,P)
into which Sn is partitioned.

B Compute the size of #Eq?(ιn,P) of the equivalence class
containing the identity, ιn.

C (More generally) characterise the set Eq?(ιn,P) of
permutations equivalent to the identity.
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Basic questions

This example illustrates the basic questions we will consider, not
just for this game, but for ones with other sets of rules P:

A Compute the number of equivalence classes #Classes?(n,P)
into which Sn is partitioned.
5,10,3,1,1,1,. . .

B Compute the size of #Eq?(ιn,P) of the equivalence class
containing the identity, ιn.
2,4,24,720,5040,40320,. . .

C (More generally) characterise the set Eq?(ιn,P) of
permutations equivalent to the identity.
all permutations for n ≥ 6. . . .

So the relation given by P = {123↔ 321} (with no adjacency
constraints) is not a particularly interesting example from this
standpoint.



A more formal description

Let P = {B1,B2, . . . ,Bt} be a (set) partition of Sk (e.g., k = 3).
Each block Bl of P represents a list of k-length patterns which can
replace one another within some π ∈ Sn.
Call π, σ P

· ·· · -equivalent if one can be obtained from the other by
a sequence of such replacements; Eq

· ·· · (π,P) is the eq. class of π.
Similarly we discuss P -equivalence and Eq (π,P) when all
moves involve only (positionally) adjacent entries:
We use P� and Eq�(π,P) when both positions and values are
constrained:
The set of distinct equivalence classes into which Sn splits under
an equivalence P∗ is denoted by Classes∗(n,P).



A more formal description

Let P = {B1,B2, . . . ,Bt} be a (set) partition of Sk (e.g., k = 3).
Each block Bl of P represents a list of k-length patterns which can
replace one another within some π ∈ Sn.
Call π, σ P

· ·· · -equivalent if one can be obtained from the other by
a sequence of such replacements; Eq

· ·· · (π,P) is the eq. class of π.
1234567, 7214563, and 7216543 ∈ Eq

· ·· ·
(
1274563,

{
{123, 321}

})
.

Similarly we discuss P -equivalence and Eq (π,P) when all
moves involve only (positionally) adjacent entries:
7214563 and 7216543 ∈ Eq

(
1274563,

{
{123, 321}

})
.

We use P� and Eq�(π,P) when both positions and values are
constrained:
7214563 ∈ Eq�

(
7216543,

{
{123, 321}

})
.

The set of distinct equivalence classes into which Sn splits under
an equivalence P∗ is denoted by Classes∗(n,P).
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.
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Knuth’s relations

An interesting and important example of a relation on Sn was
given by Knuth in his study of the Robinson-Schensted-Knuth
(RSK) correspondence: PK =

{
{213, 231}, {132, 312}

}
.

Here we are only allowed to swap (positionally) adjacent entries,
and only if there is a (positionally) adjacent intermediary. The
values, however, simply need to be in the same relative order as
231. So another way of expressing this is: Whenever a < b < c
allow any adjacent swap:

bac ↔ bca or acb ↔ cab .

Find all permutations in S5 that are Knuth-equivalent to 54123.

{54123, 51423, 51243, 15423, 15243, 12543}



Facts about Knuth relations

Here are some facts about the Knuth relations and RSK.

Two permutations are Knuth-eq. iff they map to the same
standard Young tableaux P under RSK-insertion.
[ π ↔ (P,Q)].

So one way to think of SYT is as equivalence classes of
permutations under this relation. The size of this class is the
number of SYT of the same shape.

Because of RSK’s symmetry [ π ↔ (P,Q)⇔ π−1 ↔ (Q,P).],
SYT with n-boxes correspond bijectively to involutions in Sn.
Hence the number of equivalence classes is

Inv(n) = [tn]et+ 1
2
t2

.

The identity is isolated by this relation, so the answers to B)
and C) are trivial.



Dual Equivalence Graphs

Dual Equivalence Graphs

Dual equivalence was introduced by Mark Haiman c. 1990 to
prove conjectures of Bob Proctor & Richard Stanley.

He gave a bijection between standard tableaux of shifted
staircase shape and reduced expressions for the longest
element in the Coxeter group Bl .

In her dissertation S. Assaf constructed graphs (with some
extra structure) whose vertices are tableaux of a fixed shape
(which may be viewed as permutations via their “reading
words”), and whose edges represent (elementary) dual
equivalences between vertices. She characterised the local
structure of these graphs, which she later used to give a
combinatorial formula for the Schur expansion of LLT
polynomials and Macdonald Polynomials. She also used these,
along with crystal graphs, to give a combinatorial realization
of Schur-Weyl duality.



Dual Equivalence Graphs

Dual Equivalence Graphs

Two permutations are Knuth equivalent iff their inverses are
dual-Knuth equivalent.

So from the enumerative standpoint of our work, there’s no
difference between between these relations.

OPEN: Understand the structure of the graphs one gets with
differently defined games.



The Right Superior Game

The Right Superior Game
Here are the rules for a new game on Sn. Say that two
n-permutations are equivalent if they differ by an adjacent
transposition:
aiai+1 ↔ ai+1ai , where both inequalities
ai < ai+2 and ai+1 < ai+2 hold.

P2 = {123↔ 213}.



Graph of RSUP Game

12345

21345 13245 12435

23145 31245 21435 13425 14235

32145 23415 24135 31425 41235 14325

32415 24315 34125 42135 41325

34215 42315 43125

43215
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How many permutations are equivalent to the identity?

n 3 4 5 6 7 8 9 10

#Eq◦(ιn,P) 2 4 12 36 144 576 2880 14400
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Size of the Class of ιn

How many permutations are equivalent to the identity?

n 3 4 5 6 7 8 9 10

#Eq◦(ιn,P) 2 4 12 36 144 576 2880 14400

Theorem 1. For the Right Superior Game, the number of
n-permutations in the equivalence class of the identity is

bn/2c!dn/2e!

i.e., for n = 2r , #{π : π ↔ 123 . . . n} = r !r !.

and for n = 2r + 1, #{π : π ↔ 123 . . . n} = r !(r + 1)!.



Proof that this is an upper bound.

Proof that this is an upper bound:
The largest element must be in the rightmost position.

This implies that the second-largest element must be in one of the
three rightmost positions.

This implies that the third-largest element . . .

Now, placing the elements from largest to smallest, we have the
following number of choices for each placement:

1 · 2 · 3 · · · · · dn/2e · bn/2c · · · · · 3 · 2 · 1



Proof that the upper bound is attained

Proof of equality.
It remains to show that all permutations meeting these constraints
are in fact reachable.

Imagine a target permutation meeting the constraints. That is, the
first element (even case) or first two elements (odd case) are less
than dn/2e+ 1 , the next two elements are less than dn/2e+ 2, etc.

Target: kgfOdiPahNQcbTRjUmSVWXelYZ

Step one. Working from the identity, move all the “large” elements
leftwards as far as they will go:



Proof of Attainability

.............NOPQRSTUVWXYZ

............N.OPQRSTUVWXYZ

............NO.PQRSTUVWXYZ

............NOP.QRSTUVWXYZ

............NOPQ.RSTUVWXYZ

:

............NOPQRSTUVWXY.Z

:

:

...........NOPQRSTUVWX.Y.Z

:

:

..........NOPQRSTUVW.X.Y.Z

:

:

:

.N.O.P.Q.R.S.T.U.V.W.X.Y.Z



Proof of Attainability 2

Target: kgfOdiPahNQcbTRjUmSVWXelYZ

.N.O.P.Q.R.S.T.U.V.W.X.Y.Z

Now observe that the “small” elements can be permuted freely
while leaving the “large” elements in place.

fRjS -> fjRS -> jfRS -> jRfS

Step two.Using this observation, move the correct element into the
first position. (In the odd case, move the two correct elements into
the first two positions.) Because the target permutation obeys the
constraints, this element (or pair of elements) will be small
compared with the fixed skeleton of large elements which is
facilitating their movement.

kN.O.P.Q.R.S.T.U.V.W.X.Y.Z



Proof of Attainability 3

Target: kgfOdiPahNQcbTRjUmSVWXelYZ

Continue to place elements two at a time:

kN.O.P.Q.R.S.T.U.V.W.X.Y.Z

kgfO.P.Q.R.S.T.U.V.W.X.Y.Z

kgfOdP.Q.R.S.T.U.V.W.X.Y.Z

kgfOdiPQ.R.S.T.U.V.W.X.Y.Z

kgfOdiPahR.S.T.U.V.W.X.Y.Z

:

kgfOdiPahNQcbTRjUmSVWXelYZ

�



n = 5 Example 1

As one one might expect, this algorithm constructs some
permutations efficiently, but not others.
Construction of the “furthest” permutation 32145:

1 2 3 4 5

1 3 2 4 5

1 3 4 2 5

3 1 4 2 5 <-- build the skeleton

3 1 2 4 5 <-- 3 is already at front, so advance 2

3 2 1 4 5 <-- we’re there, stop!



n = 5 Example 2

An example where the algorithm is inefficient, 12435:

1 2 3 4 5

1 3 2 4 5

1 3 4 2 5

3 1 4 2 5 <-- build the skeleton

1 3 4 2 5 <-- advance 1 (it just came from there!)

1 3 2 4 5 )

1 2 3 4 5 ) <-- 3-step procedure for advancing 2

1 2 4 3 5 )



Graph Again

12345

21345 13245 12435

23145 31245 21435 13425 14235

32145 23415 24135 31425 41235 14325

32415 24315 34125 42135 41325

34215 42315 43125

43215



Propp’s Proposition

From: James Propp <jpropp@cs.uml.edu>

Date: Wed, 8 Jul 2009 17:07:07 -0400

Subject: two hundred and ten questions

:

:

I’d like to know the partition of n! determined by the transitive

closure of each of the following seven relations on S_n:

:

The two most interesting

numbers are probably the number of components and the size of

the component containing the permutation 1,2,3,...,n.

:

I should say that I want this information for _three_ distinct

interpretations of what "123 <--> 213" means:

(a) In the narrowest sense, it could mean that if pi(i+1) = pi(i)+1

and pi(i+2) = pi(i)+2, then you can swap the values of pi(i) and

pi(i+1).

(b) More broadly, it could mean that if pi(i) < pi(i+1) < pi(i+2),

then you can swap the values of pi(i) and pi(i+1).

(c) More broadly still, it could mean that if pi(i) < pi(j) < pi(k)

for i < j < k, then you can swap the values of pi(i) and pi(j).

Jim



General Framework

General Framework

Consider interchanges of subwords of “type” σ1 ↔ σ2, where
σi ∈ S3.

As Jim described, this can be taken in three sense: (a) both
indices and values must be adjacent; (b) entries must be in
adjacent positions; (c) unrestricted in value or position

Restricting entries to be adjacent values (but not necessarily
positions) is equivalent to (b) by the map that sends
π → π−1.

In theory one could consider any of the B(6) = 203 partitions
of S3 as defining a relation (or three) of this type, although
some of these will be trivially equivalent.

To keep the problem within bounds, we currently consider
only sets of relations of the form ι3 ↔ σ, where σ ∈ S3.
Equivalently, these are partitions of S3 with a single nontrivial
block (containing ι3).



Number of Classes

How many equivalences classes for each relation?
#Classes(n,P)

Transpositions general indices adjacent indices &
values adjacent

123↔ 132 [5, 14, 42, 132, 429]
[5, 16, 62, 284, 1507, 9104] [5, 20, 102, 626, 4458, 36144]

123↔ 213 Catalan

123↔ 321
[5, 10, 3, 1, 1, 1]

[5, 16, 60, 260, 1260, 67442] [5, 20, 102, 626, 4458, 36144]
trivial

123↔ 132↔ 213
[4, 8, 16, 32, 64, 128] [4, 10, 26, 76, 232, 764]

[4, 17, 89, 556, 4011, 32843]
powers of 2 involutions

123↔ 132↔ 321 [4, 2, 1, 1, 1, 1]
[4, 8, 14, 27, 68, 159, 496] [4, 16, 84, 536, 3912, 32256]

123↔ 213↔ 321 trivial
123↔ 132 [3, 2, 1, 1, 1, 1]

[3, 4, 5, 8, 11, 20, 29, 57] [3, 13, 71, 470, 3497]↔ 213↔ 321 trivial



Size of class containing identity

Size of class containing identity: #Eq∗(ι,P)

Transpositions general indices adjacent indices &
values adjacent

123↔ 132 [2, 6, 24, 120, 720] [2, 4, 12, 36, 144, 576, 2880] [2, 3, 5, 8, 13, 21, 34, 55]
123↔ 213 (n-1)! product of two factorials Fibonacci numbers

123↔ 321
[2, 4, 24, 720] [2, 3, 6, 10, 20, 35, 70, 126] [2, 3, 4, 6, 9, 13, 19, 28]
trivial central binomial coefficients A000930

123↔ 132↔ 213
[3, 13, 71, 461] [3, 7, 35, 135, 945, 5193] [3, 4, 8, 12, 21, 33, 55, 88]
connected A003319 terms are always odd A052952

123↔ 132↔ 321 [3, 23, 120, 720] [3, 9, 54, 285, 2160, 15825] [3, 5, 9, 17, 31, 57, 105, 193]
123↔ 213↔ 321 trivial proven for odd terms tribonacci numbers A000213
123↔ 132 [3, 23, 120, 720] [4, 21, 116, 713, 5030] [4, 6, 13, 23, 44, 80, 149, 273]
↔ 213↔ 321 trivial tribonacci A000073 −[n even]



The Chinese Monoid

Note that #Classes
(
n,
{
{123, 132, 213}

})
= invn. In other

words, there is an equivalence relation on Sn other than the Knuth
relations which gives the same number of classes.
This relation was studied in detail at the level of words as an
analogue of Lascoux and Schützenberger’s plactic monoid.
Duchamp & Krob showed that there is exactly one other regular
monoid with the same Hilbert series as the plactic one.
The key observation is that any of these relations make sense when
applied to words with repeated entries: w = a1 · · · an where
each ai ∈ [n]. Just consider an entry b occurring to the right of
the same entry b to be larger. (Or add subscripts to repeated
entries from left to right.)



Chinese Monoid 2

In other words: Plactic Monoid is [n]∗/PK and
Chinese Monoid is [n]∗/P3 , where: P3 =

{
{123, 132, 213}

}
(up to

reversal of words).
In [CEHKN], the authors give an analogue of Robinson-Schensted
to characterize the equivalence classes and study the conjugacy
classes.
[CEHKN] J. Cassaigne, M. Espie, D. Krob, J.-C. Novelli,
F. Hivert, The Chinese Monoid, Int’l. J. Algebra and Comp., 11
#3 (2001), 301–334.



Why do we get involutions?

Idea of Pf: Write any involution τ ∈ Invn as product of 1- &
2-cycles; order cycles decreasing by largest elt., then drop
parentheses to get an “involution word”.
(59)(8)(17)(46)(3)(2) 7→ 598174632
We claim the set Dn of such words is canonical list of
representatives of the P3-equivalence classes.
Given any π ∈ Sn, either n is leftmost, or we can move it leftwards
using one of 123→ 132 or 213→ 132, eventually to 2nd position.
This leaves us with: Mna3 · · · an, where M = minimal elt. to left of
n in π. Now proceed inductively on the remaining elements
a3 · · · an.



Why do we get involutions?

Idea of Pf: Write any involution τ ∈ Invn as product of 1- &
2-cycles; order cycles decreasing by largest elt., then drop
parentheses to get an “involution word”.
(59)(8)(17)(46)(3)(2) 7→ 598174632
We claim the set Dn of such words is canonical list of
representatives of the P3-equivalence classes.
Given any π ∈ Sn, either n is leftmost, or we can move it leftwards
using one of 123→ 132 or 213→ 132, eventually to 2nd position.
This leaves us with: Mna3 · · · an, where M = minimal elt. to left of
n in π. Now proceed inductively on the remaining elements
a3 · · · an. The hard apart (omitted here) is to show that each
π ∈ Sn corresponds to a unique representative of Dn.
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Example of transforming a permutation to an involution word

EG:

6214375 7→ 6214375

7→ 6213745

7→ 6217345

7→ 6172345

7→ (17)62345

7→ [17]62345

7→ [17][6]2345

7→ [17][6]2345
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7→ [17][6][25]34

7→ [17][6][25][34]



Example of transforming a permutation to an involution word

EG:

6214375 7→ 6214375

7→ 6213745

7→ 6217345

7→ 6172345

7→ (17)62345

7→ [17]62345

7→ [17][6]2345

7→ [17][6]2345

7→ [17][6]2354

7→ [17][6][25]34

7→ [17][6][25][34]

7→ 1762534 ∈ D\
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Further Work & Open Problems

Further Work & Open Problems
We’ve just begun the more general study of these kinds of
relations. Plenty of open problems remain, including:

1 Find formulae for the unknown data in the table.

2 Recall our initial “Intermediary in-between” rule, but in the
adjacent context. We prove that

#Eq
(
ιn,

{
{123, 321}

})
=

(
n − 1

b(n − 1)/2c

)
in a fairly indirect way. Is there a simple combinatorial proof?

3 Understand the structure of the graphs one gets on these
relations. Are the (like Bruhat order in the unconstrained
case) posets?

4 Is there a useful length (distance from the identity) function?



Further Work & Open Problems 2

5 Answer more generally what the sizes of all the equivalence
classes are, or whether there’s a simple way to characterize
them (as insertion tableaux characterizes all permutations
which are Knuth equivalent).

6 Consider more general relations, defined by partitioning S3 in
different ways (more general block structures or connecting
non-transpositions. Or even using relations within S4?

7 Pierrot, Rossin, & West (FPSAC 2011) handle the other case
of including non-transpositions within a unique non-singleton
block containing ι3 of a partition of S3 (e.g., {123, 231}).



Thanks!

Thanks for your attention!



Thanks!

Thanks for your attention!

Any questions?


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

