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Overview

For many actions τ on a finite set S of combinatorial objects, and
for many natural real-valued statistics φ on S , one finds that the
ergodic average

lim
n→∞

1

n

n−1∑
i=0

φ(τ i (x))

is independent of the starting point x ∈ S .

We say that φ is homomesic (from Greek: “same middle”) with
respect to the combinatorial dynamical system (S , τ).

I’ll give numerous examples of homomesies (homomesic
functions), some proved and others conjectural.

Please interrupt with questions!



Introductory examples

1 Rotation of bit-strings;

2 Bulgarian solitaire;

3 Promotion of Near-Standard Young Tableaux; and

4 Suter’s symmetries.



Example 1: Rotation of bit-strings

Set S =
(
[n]
k

)
, thought of as length n binary strings with k 1’s.

τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1 (cyclic

shift), and φ(b) = #inversions(b) = #{i < j : bi > bj}.
Then over any orbit O we have:

1

#O
∑
s∈O

φ(s) =
k(n − k)

2
=

1

#S

∑
s∈S

φ(s).

EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 1010
1100 0101
0110
0011
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Example 1: Rotation of bit-strings

Set S =
(
[n]
k

)
, thought of as length n binary strings with k 1’s.

τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1 (cyclic
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2
=

1

#S

∑
s∈S

φ(s).

EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 7→ 2 1010 7→ 3
1100 7→ 4 0101 7→ 1
0110 7→ 2 AVG = 4

2 = 2
0011 7→ 0

AVG= 8
4 = 2



More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101
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More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1
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More rotation

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1

AVG= 24
6 = 4 AVG= 24

6 = 4 AVG= 12
3 = 4

We know two simple ways to prove this: one can show pictorially
that the value of the sum doesn’t change when you mutate b
(replacing a 01 somewhere in b by 10 or vice versa), or one can
write the number of inversions in b as

∑
i<j bi (1− bj) and then

perform algebraic manipulations.



Example 2: Bulgarian solitaire

Given a way of dividing n identical chips into one or more heaps
(represented as a partition λ of n), define τ(λ) as the partition of
n that results from removing a chip from each heap and putting all
the removed chips into a new heap.

E.g., for n = 8, two trajectories are
53→ 422→ 3311→ 422→ . . .

and
62→ 521→ 431→ 332→ 3221→ 4211→ 431→ . . .

(the new heaps are underlined).

Let φ(λ) be the number of parts of λ.
In the forward orbit of λ = (5, 3), the average value of φ is

(4 + 3)/2 = 7/2;
in the forward orbit of λ = (6, 2), the average value of φ is

(3 + 4 + 4 + 3)/4 = 14/4 = 7/2.



Bulgarian solitaire: homomesies

Proposition

If n = k(k − 1)/2 + j with 0 ≤ j < k, then for every partition λ of
n, the ergodic average of φ on the forward orbit of λ is k − 1 + j/k.

(n = 8 corresponds to k = 4, j = 2.)

So the number-of-parts statistic on partitions of n is homomesic
under the Bulgarian solitaire map.

The same is true for the size of the largest part, the size of the
second largest part, etc.



Ignoring transience

Since S is finite, every forward orbit is eventually periodic, and the
ergodic average of φ for the forward orbit that starts at x is just
the average of φ over the periodic orbit that x eventually goes into.

So an equivalent way of stating our main definition in this case is,
φ is homomesic with respect to (S , τ) iff the average of φ over
each periodic τ -orbit O is the same for all O.

In the rest of this talk, we’ll restrict attention to maps τ that are
invertible on S , so transience is not an issue.



Example 3: Promotion of Near-Standard Young Tableaux

Given a positive integer N, define a Near-Standard Young Tableau
(NSYT) with “ceiling” N as a Young tableau T in which entries
are distinct integers between 1 and N.

(When N equals the number of cells of T , this is just the definition
of a Standard Young Tableau.)

For each 1 ≤ i ≤ N − 1, let si be the action on NSYT’s with
ceiling N that replaces i (if it occurs in T ) by i + 1, and vice versa,
provided that this does not violate the weak-increase condition in
the definition of Young tableaux, and let ∂ be the composition of
the maps s1, s2, . . . , sN−1. This generalizes promotion of SYT’s.



A small example of promotion

(taken from J. Striker and N. Williams, Promotion and
Rowmotion, European J. Combin. 33 (2012), no. 8, 1919–1942;
http://arxiv.org/abs/1108.1172):

http://arxiv.org/abs/1108.1172


A small example of promotion: centrally symmetric sums



Promotion of Near-Standard Young Tableaux: homomesies

Conjecture

Let T be a Near-Standard Young Tableau of rectangular shape λ,
and ceiling N. If c and c ′ are opposite cells, i.e., c and c ′ are
related by 180-degree rotation about the center, (note: the case
c = c ′ is permitted when λ is odd-by-odd), and φ(T ) denotes the
sum of the numbers in cells c and c ′, then φ is homomesic under ∂
with average value N + 1.



Bender-Knuth Involution

A standard method for proving combinatorially that Schur
functions are symmetric is to use Bender-Knuth Involutions.
Given T ∈ SSYT (λ, α) and i ∈ P, consider all the entries paired
within in the same column i

i+1 to be married, which the involution
ignores. Then in a row with r i ’s and s i + 1’s, βi replaces these
with s copies of i and r of i + 1.

i
i i i i︸︷︷︸ i + 1 i + 1 i + 1 i + 1︸ ︷︷ ︸ i + 1

i + 1 i + 1 r=2 s=4

7→
i

i i i i i i︸ ︷︷ ︸ i + 1 i + 1︸ ︷︷ ︸ i + 1

i + 1 i + 1 r=4 s=2



Bender-Knuth Action on SSYT

Consider the set SSYT (λ, [N]) [shape λ, entries in [N]].
Let β := βN−1βN−2 · · ·β2β1 be the composition of all possible BK
involutions. Set φi (T ) := #i (T ).
Then the triple (SSYT (λ, [N]), β, φi ) is Comb. Erg. for each i .

EG: Let N = 5 and T =
1 1 1 2 2 3 3 3 4
2 2 3 3 4 4 5
3 4 4 5

Then the content vectors v = [φ1, φ2, . . . , φN ] that arise as we
successively apply βi ’s behave as follows, starting from [3, 4, 6, 5, 2]:

[4, 3, 6, 5, 2] [6, 4, 5, 2, 3] [5, 6, 2, 3, 4] [2, 5, 3, 4, 6] [3, 2, 4, 6, 5]
[4, 6, 3, 5, 2] [6, 5, 4, 2, 3] [5, 2, 6, 3, 4] [2, 3, 5, 4, 6] [3, 4, 2, 6, 5]
[4, 6, 5, 3, 2] [6, 5, 2, 4, 3] [5, 2, 3, 6, 4] [2, 3, 4, 5, 6] [3, 4, 6, 2, 5]
[4, 6, 5, 2, 3] [6, 5, 2, 3, 4] [5, 2, 3, 4, 6] [2, 3, 4, 6, 5] [3, 4, 6, 5, 2]



Central Symmmetry Homomesy for Semi-Standard Young Tableaux

The Bender-Knuth involutions generalize the maps s1, . . . , sN−1 for
promotion discussed above. Does the central symmetry homomesy
conjectured above extend to semi-standard tableaux (with
repeated entries)?

Conjecture

If the shape of a skew tableau has central symmetry, and φ(T )
denotes the sum of the numbers in cells c and c ′ where cells c and
c ′ are opposite one another, then φ is homomesic under promotion
with average value N + 1.

This is known when λ has one row or one column.
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Example 4: Suter’s symmetries

Let YN be the set of number-partitions λ whose maximal hook
lengths are strictly less than N (i.e., whose Young diagrams fit
inside some rectangle that fits inside the staircase shape
(N − 1,N − 2, ..., 2, 1)).

Suter showed that the Hasse diagram of YN has N-fold cyclic
symmetry (indeed, N-fold dihedral symmetry) by exhibiting an
explicit action of order N.



Suter’s action, N = 5

(taken from R. Suter, Young’s lattice and dihedral symmetries
revisited: Möbius strips and metric geometry ;
http://arxiv.org/abs/1212.4463):

http://arxiv.org/abs/1212.4463


Suter’s action, N = 5: weighted sums



Suter’s action: homomesies

Assign weight 1 to the cells at the diagonal boundary of the
staircase shape, weight 2 to their neighbors, ..., and weight N − 1
to the cell at the lower left, and for λ ∈ YN let φ(λ) be the sum of
the weights of all the cells in the Young diagram of λ.

Prop. (Einstein, P.): φ is homomesic under Suter’s map with
average value (n3 − n)/12.

More refined result: If i + j = N (note: i = j is permitted), and
φi ,j(λ) is the sum of the weights of all the cells in λ with weight i
plus the sum of the weights of all the cells in λ with weight j , then
φi ,j is homomesic under Suter’s map with average ij in all orbits.



An invertible operation on antichains

Let A(P) be the set of antichains of a finite poset P.

Given A ∈ A(P), let τ(A) be the set of minimal elements of the
complement of the downward-saturation of A.
τ is invertible since it is a composition of three invertible
operations:

antichains←→ downsets←→ upsets←→ antichains

This map and its inverse have been considered with varying
degrees of generality, by many people more or less independently
(using a variety of nomenclatures and notations): Duchet, Brouwer
and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev,
Rush and Shi, and Striker and Williams.



An example

1. Saturate downward

2. Complement

3. Take minimal element(s)

1−→ 2−→ 3−→

1



Example in lattice cell form

If we elements of the poset as squares below, we would map:

Area = 8

X X
−→

Area = 10

X

X X



Panyushev’s conjecture

Let ∆ be a reduced irreducible root system in Rn.
Choose a system of positive roots and make it a poset of rank n by
decreeing that y covers x iff y − x is a simple root.
Conjecture (Conjecture 2.1(iii) in D.I. Panyushev, On orbits of
antichains of positive roots, European J. Combin. 30 (2009),
586-594): Let O be an arbitrary τ -orbit. Then

1

#O
∑
A∈O

#(A) =
n

2
.

(Two other assertions of this kind, Panyushev’s Conjectures 2.3(iii)
and 2.4(ii), appear to remain open.)

Panyushev’s Conjecture 2.1(iii) (along with much else) was proved
by Armstrong, Stump, and Thomas in their article A uniform
bijection between nonnesting and noncrossing partitions,
http://arxiv.org/abs/1101.1277.

http://arxiv.org/abs/1101.1277


Panyushev’s conjecture: The An case, n = 2

Here we have just an orbit of size 2 and an orbit of size 3:

0 2 1

1 1

1

Within each orbit, the average antichain has cardinality n/2 = 1.



The case A3.

Here’s an example orbit taken from [AST] for the A3 root poset:

For A3 this action has three orbits (sized 2, 4, and 8), and the
average cardinality of an antichain is

1

8
(2 + 1 + 1 + 2 + 2 + 1 + 1 + 2) =

3

2



Antichains in [a]× [b]: cardinality is homomesic

A simpler-to-prove phenomenon of this kind concerns the poset
[a]× [b] (where [k] denotes the linear ordering of {1, 2, . . . , k}):

Theorem (Propp, R.)

Let O be an arbitrary τ -orbit in A([a]× [b]). Then

1

#O
∑
A∈O

#(A) =
ab

a + b
.

This is an easy consequence of unpublished work of Hugh Thomas
building on earlier work of Richard Stanley: see the last paragraph
of section 2 of R. Stanley, Promotion and evacuation,
http://www.combinatorics.org/ojs/index.php/eljc/

article/view/v16i2r9 .

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r9
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r9


Antichains in [a]× [b]: the case a = b = 2

Here we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average antichain has cardinality
ab/(a + b) = 1.

0 1 2 1

1 1

1



Antichains in [a]× [b]: fiber-cardinality is homomesic

0 0 0 1 1 1 1 0

1 0 0 1

1

Within each orbit, the average antichain has
1/2 a green element and 1/2 a blue element.



Antichains in [a]× [b]: fiber-cardinality is homomesic

For (i , j) ∈ [a]× [b], and A an antichain in [a]× [b], let 1i ,j(A) be
1 or 0 according to whether or not A contains (i , j).

Also, let fi (A) =
∑

j∈[b] 1i ,j(A) ∈ {0, 1} (the cardinality of the
intersection of A with the fiber {(i , 1), (i , 2), . . . , (i , b)} in
[a]× [b]), so that #(A) =

∑
i fi (A).

Likewise let gj(A) =
∑

i∈[a] 1i ,j(A), so that #(A) =
∑

j gj(A).

Theorem (Propp, R.)

For all i , j ,

1

#O
∑
A∈O

fi (A) =
b

a + b
and

1

#O
∑
A∈O

gj(A) =
a

a + b
.

The indicator functions fi and gj are homomesic under τ , even
though the indicator functions 1i ,j aren’t.



Antichains in [a]× [b]: centrally symmetric homomesies

Theorem (Propp, R.)

In any orbit, the number of A that contain (i , j) equals the number
of A that contain the opposite element
(i ′, j ′) = (a + 1− i , b + 1− j).

That is, the function 1i ,j − 1i ′,j ′ is homomesic under τ , with
average value 0 in each orbit.



Linearity

Useful triviality: every linear combination of homomesies is itself
homomesic.

E.g., consider the adjusted major index statistic defined by
amaj(A) =

∑
(i ,j)∈A(i − j).

P. and Roby proved that amaj is homomesic under τ
by writing it as a linear combination of the functions 1i ,j − 1i ′,j ′ .
Haddadan gave a simpler proof,
writing amaj as a linear combination of the functions fi and gj .

Question: Are there other homomesic combinations of the
indicator functions 1i ,j (with (i , j) ∈ [a]× [b]),
linearly independent of the functions fi , gj , and 1i ,j − 1i ′,j ′?



From antichains to order ideals

Given a poset P and an antichain A in P, let I(A) be the order
ideal I = {y ∈ P : y ≤ x for some x ∈ A} associated with A, so
that for any order ideal I in P, I−1(I ) is the antichain of maximal
elements of I .

As usual, we let J(P) denote the set of (order) ideals of P.

We define τ : J(P)→ J(P) by τ(I ) = I(τ(I−1(I ))). That is, τ(I )
is the downward saturation of the set of minimal elements of the
complement of I .

For (i , j) ∈ P and I ∈ J(P), let 1i ,j(I ) be 1 or 0 according to
whether or not I contains (i , j).



One action, two vector spaces

τ is “the same” τ in the sense that the standard bijection from
A(P) to J(P) (downward saturation) makes the following diagram
commute:

A(P)
τ−→ A(P)

↓ ↓
J(P)

τ−→ J(P)

However, the bijection from A(P) to J(P) does not carry the
vector space generated by the functions 1i ,j to the vector space
generated by the functions 1i ,j in a linear way.

So the homomesy situation for τ : J(P)→ J(P) could be
(and, as we’ll see, is) different from the homomesy situation for
τ : A(P)→ A(P).



Ideals in [a]× [b]: cardinality is homomesic

Theorem (Propp, R.)

Let O be an arbitrary τ -orbit in J([a]× [b]). Then

1

#O
∑
I∈O

#(I ) =
ab

2
.



Rowmotion on [4]× [2] A



Rowmotion on [4]× [2] A

1

Area = 0

2

Area = 1

3

Area = 3

4

Area = 5

5

Area = 7

6

Area = 8

(0+1+3+5+7+8) / 6 = 4



Rowmotion on [4]× [2] B



Rowmotion on [4]× [2] B

1

Area = 2

2

Area = 4

3

Area = 6

4

Area = 6

5

Area = 4

6

Area = 2

(2+4+6+6+4+2) / 6 = 4



Rowmotion on [4]× [2] C



Rowmotion on [4]× [2] C

1

Area = 3

2

Area = 5

3

Area = 4

4

Area = 3

5

Area = 5

6

Area = 4

(3+5+4+3+5+4) / 6 = 4



Ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average order ideal has cardinality ab/2 = 2.

0 1 3 4

2 2

1



Ideals in [a]× [b]: file-cardinality is homomesic

0 0 0 0 1 0 1 1 1 1 2 1

1 1 0 0 1 1

1

Within each orbit, the average order ideal has
1/2 a violet element, 1 red element, and 1/2 a brown element.



Ideals in [a]× [b]: file-cardinality is homomesic

For 1− b ≤ k ≤ a− 1, define the kth file of [a]× [b] as

{(i , j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, i − j = k}.

For 1− b ≤ k ≤ a− 1, let hk(I ) be the number of elements of I in
the kth file of [a]× [b], so that #(I ) =

∑
k hk(I ).

Theorem (Propp, R.)

For every τ -orbit O in J([a]× [b]),

1

#O
∑
I∈O

hk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.



Ideals in [a]× [b]: centrally symmetric homomesies

Recall that for (i , j) ∈ [a]× [b], and I an ideal in [a]× [b], 1i ,j(I ) is
1 or 0 according to whether or not I contains (i , j).

Write (i ′, j ′) = (a + 1− i , b + 1− j), the point opposite (i , j) in the
poset.

Theorem (Propp, R.)

1i ,j + 1i ′,j ′ is homomesic under τ .

Question: In addition to the functions hk and 1i ,j + 1i ′,j ′ , are
there other homomesic functions in the span of the functions 1i ,j?



The two vector spaces, compared

In the space associated with antichains:
fiber-cardinalities and
centrally symmetric differences

are homomesic.

In the space associated with order ideals:
file-cardinalities and
centrally symmetric sums

are homomesic.
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The last slide of this talk

We’ve found lots of examples of conjectural homomesies in all
branches of combinatorics, starting at the level of the twelve-fold
way and progressing through spanning trees, parking functions,
abelian sandpiles (aka chip-firing), rotor-routing, etc.

For more information, see:

http://jamespropp.org/ucbcomb12.pdf

http://jamespropp.org/mathfest12a.pdf

http://www.math.uconn.edu/∼troby/combErg2012kizugawa.pdf
http://jamespropp.org/mitcomb13a.pdf

http://jamespropp.org/propp-roby.pdf

http://jamespropp.org/ucbcomb12.pdf
http://jamespropp.org/mathfest12a.pdf
http://www.math.uconn.edu/~troby/combErg2012kizugawa.pdf
http://jamespropp.org/mitcomb13a.pdf
http://jamespropp.org/propp-roby.pdf

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



