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Overview

The rowmotion operator on a poset;

Panyushev’s Conjecture for rowmotion on root posets;

Definition of combinatorial ergodicity;

Rowmotion and Promotion on products of chains; and

Further directions.



The rowmotion operation on antichains

Let A(P) be the set of antichains of a finite poset P.

Given A ∈ A(P), let τ(A) be the set of minimal elements of the
complement of the order ideal (downward-saturation) of A.
For example, viewing elements of the poset as squares below, we
would map:

Area = 8

X X
−→

Area = 10

X

X X



Rowmotion on posets 2

τ is invertible since it is a composition of three invertible
operations:

antichains↔ order ideals (down-sets)↔ up-sets↔ antichains

This also shows that the same map, call it τ , can be thought of as
operating on the set of order ideals in J(P) as well as A(P).

This map and its inverse have been considered with varying
degrees of generality, by many people more or less independently
(using a variety of nomenclatures and notations): Duchet, Brouwer
and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev,
and Striker and Williams (who coined the term “rowmotion”).



Panyushev’s conjecture

Most of the work on rowmotion has focussed on its orbit structure,
with the notable exception of some conjectures of Panyushev, e.g.,

Conjecture (Panyushev, Conj. 2.1(iii))

Let ∆ be a reduced irreducible root system in Rn.
Choose a system of positive roots and make it a poset by decreeing
that y covers x iff y − x is a simple root.
Let O be an arbitrary τ -orbit. Then

1

#O
∑
A∈O

#(A) =
n

2
.

In other words, the average size of an antichain over any
rowmotion orbit is independent of the orbit.

This was proved by Armstrong, Stump, and Thomas in their 2011
article “A uniform bijection between nonnesting and noncrossing
partitions”.



An example of AST’s result

Here’s an example orbit taken from [AST] for the A3 root poset:

For A3 this action has three orbits (sized 2, 4, and 8), and the
average cardinality of an antichain is

1

8
(2 + 1 + 1 + 2 + 2 + 1 + 1 + 2) =

3

2



Definition of Combinatorial Ergodicity

Let ξ : S → S be a map (action) on a finite set of
combinatorial objects S .

Under this action, S naturally decomposes as a (disjoint)
union of finitely many distinct ξ-orbits: S =

⋃
Ok .

Let φ : S → F (usually F = R or C) be some natural statistic
on S .

We say that the triple (S , ξ, φ) exhibits combinatorial ergodicity
if the average of φ over each ξ-orbit O in S is the same as the
average of φ over the whole set S :

1

#O
∑
s∈O

φ(s) =
1

#S

∑
s∈S

φ(s).
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A simple example

Set S =
(
[n]
k

)
, thought of as length n binary strings with k 1’s.

τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1 (cyclic
shift), and φ(b) = #inversions(b) = #{i < j : bi > bj}.
Then over any orbit O we have:

1

#O
∑
s∈O

φ(s) =
k(n − k)

2
=

1

#S

∑
s∈S

φ(s).

EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 1010
1100 0101
0110
0011
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A simple example

Set S =
(
[n]
k

)
, thought of as length n binary strings with k 1’s.

τ := CR : S → S by b = b1b2 · · · bn 7→ bnb1b2 · · · bn−1 (cyclic
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EG: n = 4, k = 2 gives us two orbits:

0011 0101

1001 7→ 2 1010 7→ 3
1100 7→ 4 0101 7→ 1
0110 7→ 2 AVG = 4

2 = 2
0011 7→ 0

AVG= 8
4 = 2



A larger example

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 100010 100100
110000 010001 010010
011000 101000 001001
001100 010100
000110 001010
000011 000101
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A larger example

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1



A larger example

EG: n = 6, k = 2 gives us three orbits:

000011 000101 001001

100001 7→ 4 100010 7→ 5 100100 7→ 6
110000 7→ 8 010001 7→ 3 010010 7→ 4
011000 7→ 6 101000 7→ 7 001001 7→ 2
001100 7→ 4 010100 7→ 5
000110 7→ 2 001010 7→ 3
000011 7→ 0 000101 7→ 1

AVG= 24
6 = 4 AVG= 24

6 = 4 AVG= 12
3 = 4



Summary so far

We’ve defined (S , ξ, φ) to be combinatorial ergodic if the
average of φ over every ξ-orbit O in S is the same:
1

#O
∑

s∈O φ(s) = 1
#S

∑
s∈S φ(s). The two examples we’ve seen:

(binary n-strings with k 1’s,CR = cyclic shift,#inversions)

(A(P), τ = rowmotion,#A) where P is a (+)-root poset.

Q: In what other situations does this phenomenon arise?
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Products of two chains

Consider the poset [a]× [b] (where [n] denotes the linear ordering
of {1, 2, . . . , n}).

Proposition

Let O be an arbitrary τ -orbit in A([a]× [b]). Then

1

#O
∑
A∈O

#(A) =
ab

a + b
.

In other words, (A([a]× [b]), τ,#A) is combinatorially ergodic.

But even more is true.



Rowmotion on [4]× [2] A



Rowmotion on [4]× [2] A

1

Area = 0

2

Area = 1

3

Area = 3
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(0+1+3+5+7+8) / 6 = 4
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Rowmotion on [4]× [2] B
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Rowmotion on [4]× [2] C

1

Area = 3

2

Area = 5

3

Area = 4

4

Area = 3

5

Area = 5

6

Area = 4

(3+5+4+3+5+4) / 6 = 4



Combinatorial Ergodicity of order ideal sizes under rowmotion

Theorem (Propp-R.)

Let O be an arbitrary τ -orbit in J([a]× [b]). Then

1

#O
∑
I∈O

#(I ) =
ab

2
.

I.e., (J([a]× [b]), τ ,#I ) is combinatorially ergodic.

The proof for this appears (so far) to be significantly harder than
for the same action with the #A statistic.

What else can we vary here? How about the operation!
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Toggling

In their 1995 article “Orbits of antichains revisited”, Cameron and
Fon-der-Flaass give an alternative description of τ in terms of
toggle-operations applied to order ideals.

Given I ∈ J(P) and x ∈ P, let τx(I ) = I4{x} provided that
I4{x} is an order ideal of P; otherwise, let τx(I ) = I .

We call the involution τx “toggling at x”.

The involutions τx and τy commute unless x covers y or
y covers x .



Toggling from top to bottom

Theorem (Cameron and Fon-der-Flaass): Let x1, x2, . . . , xn be any
order-preserving enumeration (linear extension) of the elements of
the poset P. Then the action on J(P) given by the composition
τx1 ◦ τx2 ◦ · · · ◦ τxn coincides with the action of τ .

In the particular case P = [a]× [b], we can enumerate P
rank-by-rank; that is, we can list the (i , j)’s in order by i + j .

Note that all the involutions coming from a given rank of P
commute with one another, since no two of them are in a covering
relation. We compute τ from top to bottom, τ−1 from
bottom-to-top.



Rowmotion on [4]× [2] B

1
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Toggling from side to side

Define a file of P = [a]× [b] as the set of all (i , j) ∈ P with i − j
fixed. Note that all toggles in a given file commute with one
another, since no two of them are in a covering relation.

Theorem (Striker-Williams)

Let x1, x2, . . . , xn be any enumeration of the elements of the poset
[a]× [b] arranged in order of decreasing i − j . Then the action on
J(P) given by ∂ := τx1 ◦ τx2 ◦ · · · ◦ τxn viewed as acting on the paths
(or binary strings representing them) is just a leftward cyclic shift.

Striker and Williams call this well-defined composition promotion
since it is closely related to Schützenberger’s notion of promotion
on linear extensions of posets. This definition and their results
apply more generally to the class of rc-posets, whose elements fit
neatly into rows & columns.



Promotion on [3]× [2] A



Promotion on [3]× [2] A
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Promotion on [3]× [2] B
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Combinatorial Ergodicity for promotion

Theorem (Propp-R.)

Let O be an arbitrary orbit in J([a]× [b]) under the action of
promotion ∂. Then

1

#O
∑
I∈O

#(I ) =
ab

2
.

(I.e., (J([a]× [b]), ∂,#I ) satisfies combinatorial ergodicity.)



Proof that (J([a]× [b]), ∂,#I ) is comb. ergodic

Proof: (Sketch) Each order ideal I is defined by a lattice path,
which can be represented as a binary string w of a 0’s and b 1’s
(where 0=Down (SE), 1=Up (NE)). Then #I = inv(w), so we
want to show that

1

#O
∑
w∈O

inv(w) =
ab

2
.

There are several short proofs of this, e.g., one can write the
number of inversions in w as

∑
i<j wi (1− wj) and then perform

algebraic manipulations.



The story thus far

We’ve looked at 2 different actions (rowmotion and promotion)
and 2 different notions of cardinality (statistics) for the objects
they act on (antichains and order ideals).
In 3 of the 2× 2 cases, we’ve seen that actions and statistics
satisfy combinatorial ergodicity, i.e., the average cardinality
along an orbit doesn’t depend on the orbit. How about the 4th?

Comb. Erg.? #I #A

Rowmotion Y Y

Promotion Y ?
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The story thus far

We’ve looked at 2 different actions (rowmotion and promotion)
and 2 different notions of cardinality (statistics) for the objects
they act on (antichains and order ideals).
In 3 of the 2× 2 cases, we’ve seen that actions and statistics
satisfy combinatorial ergodicity, i.e., the average cardinality
along an orbit doesn’t depend on the orbit. How about the 4th?

Comb. Erg.? #I #A

Rowmotion Y Y

Promotion Y N

Our framework allows for a good deal of flexibility: one can vary

the statistic (φ),

the action or map (τ),

the poset P,

or look beyond the setting of posets.



Future Directions and Questions

We’ve just begun to explore the territory here, so there’s lots left
to do, including:

1 Look for other interesting cases of combinatorially ergodicity;

2 Try to construct frameworks that make it easier to find and
prove examples (e.g., building up more complicated instances
from simpler ones);

3 Clarify the relationship with the Cyclic Sieving Phenomenon of
Reiner, Stanton, & White. Comb. ergodicity often arise in
situations where there is also a CSP.

We expect to put a paper on the arXiv later this summer that will
lay out the basic framework, including the examples from this talk
and a number of others.



Why “Ergodicity”?

This may seem like a misnomer: A measurable action is ergodic iff
the only invariant sets have measure zero or full measure, so in the
combinatorial setting, an action is ergodic iff it is transitive.

However, the coinage makes more sense if you think back to
Boltzmann’s original notion of the equality between space-averages
and long-term time-averages.

Note that if x is a periodic point for the invertible map τ (and
there is no other kind of point if τ is a permutation!) we have

lim
n→∞

1

n

n−1∑
k=0

φ(τk(x)) =
1

#(O)

∑
y∈O

φ(y)

where O is the orbit of x .
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The final slide of this talk

I’m happy to talk about this further with anyone who’s interested.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html
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