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Abstract

Within dynamical algebraic combinatorics, an action of particular interest on the set of order ideals of a finite poset
P is rowmotion (aka the “Fon-der-Flaass map” aka “Panyushev complementation”). Various surprising properties
of rowmotion have been exhibited in work of Brouwer/Schrijver, Cameron/Fon der Flaass, Panyushev,
Armstrong/Stump/Thomas, Striker/Williams, and Propp/R. For example, its order is p + q when P is the product
[p]× [q] of two chains, and several natural statistics have the same average over every rowmotion orbit (i.e., are
”homomesic”).

Recent work of Einstein/Propp generalizes rowmotion twice: first to the piecewise-linear setting of a poset’s ”order
polytope”, defined by Stanley in 1986, and then via detropicalization to the birational setting.

In these latter settings, generalized rowmotion no longer has finite order in the general case. Results of Grinberg
and the speaker, however, show that it still has order p + q on the product [p]× [q] of two chains, and still has
finite order for a wide class of forest-like (”skeletal”) graded posets and for some triangle-shaped posets. Our
methods of proof are partly based on those used by Volkov to resolve the type AA (rectangular) Zamolodchikov
Periodicity Conjecture, and recently a workgroup at an AIM workshop found a more direct connection between
Y -systems and birational rowmotion on [p]× [q].
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Review of classical and piecewise-linear rowmotion;

Detropicalizing to birational toggles and rowmotion on a finite
poset P;

Periodicity and order of birational rowmotion on P,
particularly products of chains and graded forests;

A sketch of some proof ideas;

Homomesy in the birational context;



Classical rowmotion

Classical rowmotion is the rowmotion studied by Striker-Williams
(arXiv:1108.1172). It has appeared many times before, under
different guises:

Brouwer-Schrijver (1974) (as a permutation of the antichains),

Fon-der-Flaass (1993) (as a permutation of the antichains),

Cameron-Fon-der-Flaass (1995) (as a permutation of the
monotone Boolean functions),

Panyushev (2008), Armstrong-Stump-Thomas (2011) (as a
permutation of the antichains or “nonnesting partitions”, with
relations to Lie theory).



Classical rowmotion: the standard definition

Let P be a finite poset.
Classical rowmotion is the map r : J(P)→ J(P) which sends
every order ideal S to the order ideal obtained as follows:
Let M be the set of minimal elements of the complement
P \ S .
Then, r(S) shall be the order ideal generated by these
elements (i.e., the set of all w ∈ P such that there exists an
m ∈ M such that w ≤ m).

Example:
Let S be the following order ideal ( = inside order ideal):

# #

 # #

  



Classical rowmotion: the standard definition

Let P be a finite poset.
Classical rowmotion is the map r : J(P)→ J(P) which sends
every order ideal S to the order ideal obtained as follows:
Let M be the set of minimal elements of the complement
P \ S .
Then, r(S) shall be the order ideal generated by these
elements (i.e., the set of all w ∈ P such that there exists an
m ∈ M such that w ≤ m).

Example:
Mark M (= minimal elements of complement) blue.

# #

   

  



Classical rowmotion: the standard definition

Let P be a finite poset.
Classical rowmotion is the map r : J(P)→ J(P) which sends
every order ideal S to the order ideal obtained as follows:
Let M be the set of minimal elements of the complement
P \ S .
Then, r(S) shall be the order ideal generated by these
elements (i.e., the set of all w ∈ P such that there exists an
m ∈ M such that w ≤ m).

Example:
Forget about the old order ideal:

# #

#   

# #



Classical rowmotion: the standard definition

Let P be a finite poset.
Classical rowmotion is the map r : J(P)→ J(P) which sends
every order ideal S to the order ideal obtained as follows:
Let M be the set of minimal elements of the complement
P \ S .
Then, r(S) shall be the order ideal generated by these
elements (i.e., the set of all w ∈ P such that there exists an
m ∈ M such that w ≤ m).

Example:
r(S) is the order ideal generated by M (“everything below M”):

# #

#   

  



Classical rowmotion: properties

Classical rowmotion is a permutation of J(P), hence has finite
order. This order can be fairly large.

However, for some types of P, the order can be explicitly
computed or bounded from above.
See Striker-Williams for an exposition of known results.

If P is a p × q-rectangle:

(2, 3)

(2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1)

(shown here for p = 2 and q = 3), then ord (r) = p + q.



Classical rowmotion: properties

Classical rowmotion is a permutation of J(P), hence has finite
order. This order can be fairly large.
However, for some types of P, the order can be explicitly
computed or bounded from above.
See Striker-Williams for an exposition of known results.

If P is a p × q-rectangle:

(2, 3)

(2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1)

(shown here for p = 2 and q = 3), then ord (r) = p + q.



Classical rowmotion: properties

Example:
Let S be the order ideal of the 2× 3-rectangle given by:

(2, 3)

(2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: properties

Example:
r(S) is

(2, 3)

(2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: properties

Example:
r2(S) is

(2, 3)

(2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: properties

Example:
r3(S) is

(2, 3)

(2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: properties

Example:
r4(S) is

(2, 3)

(2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: properties

Example:
r5(S) is

(2, 3)

(2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1)

which is precisely the S we started with.

ord(r) = p + q = 2 + 3 = 5.



Classical rowmotion: the toggling definition

There is an alternative definition of classical rowmotion, which
splits it into many small operations, each an involution.

Define tv (S) as:

S 4 {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result
remains within J(P); otherwise, leave S fixed.”)

More formally, if P is a poset and v ∈ P, then the v-toggle is
the map tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are
in S already;
S \ {v}, if v is in S but none of the elements of P covering v
is in S ;
S otherwise.
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S \ {v}, if v is in S but none of the elements of P covering v
is in S ;
S otherwise.



Classical rowmotion: the toggling definition

There is an alternative definition of classical rowmotion, which
splits it into many small operations, each an involution.

Define tv (S) as:

S 4 {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result
remains within J(P); otherwise, leave S fixed.”)

More formally, if P is a poset and v ∈ P, then the v-toggle is
the map tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are
in S already;
S \ {v}, if v is in S but none of the elements of P covering v
is in S ;
S otherwise.



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
Start with this order ideal S :

(2, 2)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
First apply t(2,2), which changes nothing:

(2, 2)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
Then apply t(1,2), which adds (1, 2) to the order ideal:

(2, 2)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
Then apply t(2,1), which removes (2, 1) from the order ideal:

(2, 2)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
Finally apply t(1,1), which changes nothing:

(2, 2)

(2, 1) (1, 2)

(1, 1)



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a
list of all elements of P (each only once) such that i < j
whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
So this is r(S):

(2, 2)

(2, 1) (1, 2)

(1, 1)



Generalizing to PL setting: the order polytope of a poset

We can generalize this idea of composition of toggles to define a
piecewise-linear (PL) version of rowmotion on an infinite set of
functions on a poset.

Let P be a poset, with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.
The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y)
whenever x ≤P y .



Generalizing to PL setting: the order polytope of a poset

We can generalize this idea of composition of toggles to define a
piecewise-linear (PL) version of rowmotion on an infinite set of
functions on a poset.

Let P be a poset, with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.
The order polytope O(P) (introduced by R. Stanley) is the set of
functions f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y)
whenever x ≤P y .



Flipping-maps in the order polytope

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f
to the unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Note that the interval [minz ·>x f (z),maxw<· x f (w)] is precisely
the set of values that f ′(x) could have so as to satisfy the
order-preserving condition, if f ′(y) = f (y) for all y 6= x ;
the map that sends f (x) to minz ·>x f (z) + maxw<· x f (w)− f (x)
is just the affine involution that swaps the endpoints.



Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z ·>x

f (z) + max
w<· x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9



Composing flips

Just as we can apply toggle-maps from top to bottom, we can
apply flip-maps from top to bottom:

.8 .6 .6

.4 .3

σN

→ .4 .3

σW

→ .3 .3

.1 .1 .1

.6 .6
σE

→ .3 .4

σS

→ .3 .4

.1 .2

(Here we successively flip values at the North, West, East, and
South.)



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary
ring operations (+, ·) with the tropical operations (max,+). In the
piecewise-linear (PL) category of the order polytope studied above,
our flipping-map at x replaced the value of a function
f : P → [0, 1] at a point x ∈ P with f ′, where

f ′(x) := min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

We can“detropicalize” this flip map and apply it to an assignment

f : P → R(x) of rational functions to the nodes of the poset
(using that min(zi ) = −max(−zi )) to get

f ′(x) =

∑
w<· x f (w)

f (x)
∑

z ·>x
1

f (z)



Birational rowmotion: definition

Let P be a finite poset. We define P̂ to be the poset obtained
by adjoining two new elements 0 and 1 to P and forcing

0 to be less than every other element, and
1 to be greater than every other element.

Example:

P =

δ

γ

α β

=⇒

P̂ =

1

δ

γ

α β

0



Birational rowmotion: definition

Let K be a field.

A K-labelling of P will mean a function P̂ → K.

The values of such a function will be called the labels of the
labelling.

We will represent labellings by drawing the labels on the
vertices of the Hasse diagram of P̂.

Example: This is a Q-labelling of the 2× 2-rectangle:

14

10

−2 7

1/3

12



Birational rowmotion: definition

For any v ∈ P, define the birational v-toggle as the rational

map Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =



f (w) , if w 6= v ;

1

f (v)
·

∑
u∈P̂;
ulv

f (u)

∑
u∈P̂;
umv

1

f (u)

, if w = v

for all w ∈ P̂.

That is,

invert the label at v ,
multiply by the sum of the labels at vertices covered by v ,
multiply by the parallel sum of the labels at vertices
covering v .



Birational rowmotion: definition

For any v ∈ P, define the birational v-toggle as the rational

map Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =



f (w) , if w 6= v ;

1

f (v)
·

∑
u∈P̂;
ulv

f (u)

∑
u∈P̂;
umv

1

f (u)

, if w = v

for all w ∈ P̂.

Notice that this is a local change to the label at v ; all other
labels stay the same.

We have T 2
v = id (on the range of Tv ), and Tv is a birational

map.



Birational rowmotion: definition

We define birational rowmotion as the rational map

R := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P.

This is indeed independent on the linear extension, because:

Tv and Tw commute whenever v and w are incomparable
(even when they are not adjacent in the Hasse diagram of P);
we can get from any linear extension to any other by switching
incomparable adjacent elements.

For more information about the lifting of rowmotion from
classical to PL to birational, see, Einstein-Propp [EiPr13],
where R is denoted ρB .
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Birational rowmotion: definition

We define birational rowmotion as the rational map

R := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P.

This is indeed independent on the linear extension, because:

Tv and Tw commute whenever v and w are incomparable
(even when they are not adjacent in the Hasse diagram of P);
we can get from any linear extension to any other by switching
incomparable adjacent elements.

For more information about the lifting of rowmotion from
classical to PL to birational, see, Einstein-Propp [EiPr13],
where R is denoted ρB .



Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1

(2, 2)

(2, 1) (1, 2)

(1, 1)

0

b

z

x y

w

a

We have R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2) (using the linear
extension ((1, 1), (1, 2), (2, 1), (2, 2))).
That is, toggle in the order “top, left, right, bottom”.



Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1

(2, 2)

(2, 1) (1, 2)

(1, 1)

0

b

z

x y

w

a

We have R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2) (using the linear
extension ((1, 1), (1, 2), (2, 1), (2, 2))).
That is, toggle in the order “top, left, right, bottom”.



Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(2,2)f

b

z

x y

w

a

b

b(x+y)
z

x y

w

a

We are using R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(2,1)T(2,2)f

b

z

x y

w

a

b

b(x+y)
z

bw(x+y)
xz y

w

a

We are using R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,2)T(2,1)T(2,2)f

b

z

x y

w

a

b

b(x+y)
z

bw(x+y)
xz

bw(x+y)
yz

w

a

We are using R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)T(1,2)T(2,1)T(2,2)f = Rf

b

z

x y

w

a

b

b(x+y)
z

bw(x+y)
xz

bw(x+y)
yz

ab
z

a

We are using R = T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2).



Birational rowmotion orbit on a product of chains

Example:
Iteratively apply R to a labelling of the 2× 2-rectangle.
R0f =

b

z

x y

w

a



Birational rowmotion orbit on a product of chains

Example:
Iteratively apply R to a labelling of the 2× 2-rectangle.
R1f =

b

b(x+y)
z

bw(x+y)
xz

bw(x+y)
yz

ab
z

a



Birational rowmotion orbit on a product of chains

Example:
Iteratively apply R to a labelling of the 2× 2-rectangle.
R2f =

b

bw(x+y)
xy

ab
y

ab
x

az
x+y

a



Birational rowmotion orbit on a product of chains

Example:
Iteratively apply R to a labelling of the 2× 2-rectangle.
R3f =

b

ab
w

ayz
w(x+y)

axz
w(x+y)

xy
aw(x+y)

a



Birational rowmotion orbit on a product of chains

Example:
Iteratively apply R to a labelling of the 2× 2-rectangle.
R4f =

b

z

x y

w

a



Birational rowmotion orbit on a product of chains

Example:
Iteratively apply R to a labelling of the 2× 2-rectangle.
R4f =

b

z

x y

w

a

So we are back where we started.

ord(R) = 4.



Birational rowmotion: order

Let ordφ denote the order of a map or rational map φ. This is
the smallest positive integer k such that φk = id (on the
range of φk), or ∞ if no such k exists.

A straightforward argument shows that ord(r) | ord(R) for
every finite poset P.

Do we have equality?

No! Here are two posets with ord(R) =∞:

# # #

# #

# # #

# # # #

Nevertheless, equality holds for many special types of P.
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every finite poset P.
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Birational rowmotion: order

Let ordφ denote the order of a map or rational map φ. This is
the smallest positive integer k such that φk = id (on the
range of φk), or ∞ if no such k exists.

A straightforward argument shows that ord(r) | ord(R) for
every finite poset P.

Do we have equality?
No! Here are two posets with ord(R) =∞:

# # #

# #

# # #

# # # #

Nevertheless, equality holds for many special types of P.



Birational rowmotion: the graded forest case

Theorem. Assume that n ∈ N, and P is a poset which is a
forest (made into a poset using the “descendant” relation)
having all leaves on the same level n (i.e., each maximal chain
of P has n vertices). Then,

ord(R) = ord(r) | lcm (1, 2, ..., n + 1) .

Example: For P as shown, ord(R) = ord(r) | lcm(1, 2, 3, 4) = 12.

P =

# #

# # #

# # # # #



Birational rowmotion: the graded forest case

Even the ord(r) | lcm (1, 2, ..., n + 1) part of this result seems
to be new.

The proof that ord(R) | lcm (1, 2, ..., n + 1) is essentially
inductive, but with a few complications. We consider the
interplay between the map R, defined on homogenous
equivalence classes of labelings and R itself.

In fact, our proof handles the wider class of posets we call
“skeletal posets”. (These can be regarded as a generalization
of forests where we are allowed to graft existing forests on
roots on the top and on the bottom, and to use antichains
instead of roots. An example is the 2× 2-rectangle.)



Birational rowmotion: homogeneous equivalence

Two K-labellings f and g of P are said to be homogeneously
equivalent if there is a (λ1, λ2, ..., λn) ∈ (K \ 0)n such that

g (v) = λi f (v) for all i and all v ∈ Pi .

Example: These two labellings:

a1

z1

x1 y1

w1

b1

and a2

z2

x2 y2

w2

b2

are homogeneously equivalent if and only if
x1

y1
=

x2

y2
.



Birational rowmotion: homogeneous equivalence and R

Let KP̂ denote the set of all K-labellings of P (with no zero
labels) modulo homogeneous equivalence.

Let π : KP̂ 99K KP̂ be the canonical projection.

There exists a rational map R : KP̂ 99K KP̂ such that the
diagram

KP̂ R //

π
��

KP̂

π
��

KP̂

R

// KP̂

commutes.

Hence ord
(
R
)
| ord(R).



Birational rowmotion: the rectangle case

Theorem (periodicity): If P is the p × q-rectangle (i.e., the
poset {1, 2, ..., p} × {1, 2, ..., q} with coordinatewise order),
then

ord (R) = p + q.

Example: For the 2× 2-rectangle, this claims ord (R) = 2 + 2 = 4,
which we have already seen.

Theorem (reciprocity): If P is the p × q-rectangle, and

(i , k) ∈ P and f ∈ KP̂ , then

f

(p + 1− i , q + 1− k)︸ ︷︷ ︸
=antipode of (i ,k)

in the rectangle

 =
f (0)f (1)

(R i+k−1f ) ((i , k))
.

These were conjectured (independently) by James Propp and
R.
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Birational rowmotion: the rectangle case, example

Example: Here is the generic R-orbit on the 2× 2-rectangle again:

b

z

x y

w

a

b

b(x+y)
z

bw(x+y)
xz

bw(x+y)
yz

ab
z

a

b

bw(x+y)
xy

ab
y

ab
x

az
x+y

a

b

ab
w

ayz
w(x+y)

axz
w(x+y)

axy
w(x+y)

a
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Birational rowmotion: the rectangle case, proof idea

Inspiration: Alexandre Yu. Volkov, On Zamolodchikov’s
Periodicity Conjecture, arXiv:hep-th/0606094.

We reparametrize our assignments f : P̂ → K through
p × (p + q)-matrices in such a way that birational rowmotion
corresponds to “cycling” the columns of the matrix.

This uses a 3-term Plücker relation.

Lots of technicalities to be managed, particularly around
birational maps not necessarily being defined everywhere.



Birational rowmotion: the rectangle case, proof

Let A ∈ Kp×(p+q) be a matrix with p rows and p + q columns.

Let Ai be the i-th column of A. Extend to all i ∈ Z by setting

Ap+q+i = (−1)p−1 Ai for all i .

Let A [a : b | c : d ] be the matrix whose columns are
Aa, Aa+1, ..., Ab−1, Ac , Ac+1, ..., Ad−1 from left to right.

For every j ∈ Z, we define a K-labelling Graspj A ∈ KP̂ by(
Graspj A

)
((i , k))

=
det (A [j + 1 : j + i | j + i + k − 1 : j + p + k])

det (A [j : j + i | j + i + k : j + p + k])

for every (i , k) ∈ P (this is well-defined for a Zariski-generic
A) and

(
Graspj A

)
(0) =

(
Graspj A

)
(1) = 1.
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Let Ai be the i-th column of A. Extend to all i ∈ Z by setting

Ap+q+i = (−1)p−1 Ai for all i .

Let A [a : b | c : d ] be the matrix whose columns are
Aa, Aa+1, ..., Ab−1, Ac , Ac+1, ..., Ad−1 from left to right.

For every j ∈ Z, we define a K-labelling Graspj A ∈ KP̂ by(
Graspj A

)
((i , k))

=
det (A [j + 1 : j + i | j + i + k − 1 : j + p + k])

det (A [j : j + i | j + i + k : j + p + k])

for every (i , k) ∈ P (this is well-defined for a Zariski-generic
A) and

(
Graspj A

)
(0) =

(
Graspj A

)
(1) = 1.



Birational rowmotion: the rectangle case, proof

The proof of ord(R) = p + q now rests on four claims:

Claim 1: Graspj A = Graspp+q+j A for all j and A.

Claim 2: R
(
Graspj A

)
= Graspj−1 A for all j and A.

Claim 3: For almost every f ∈ KP̂ satisfying f (0) = f (1) = 1,
there exists a matrix A ∈ Kp×(p+q) such that Grasp0 A = f .
Claim 4: In proving ord(R) = p + q we can WLOG assume
that f (0) = f (1) = 1.

Claim 1 is immediate from the definitions.



Birational rowmotion: the rectangle case, proof

The proof of ord(R) = p + q now rests on four claims:

Claim 1: Graspj A = Graspp+q+j A for all j and A.

Claim 2: R
(
Graspj A

)
= Graspj−1 A for all j and A.

Claim 3: For almost every f ∈ KP̂ satisfying f (0) = f (1) = 1,
there exists a matrix A ∈ Kp×(p+q) such that Grasp0 A = f .
Claim 4: In proving ord(R) = p + q we can WLOG assume
that f (0) = f (1) = 1.

Claim 2 is a computation with determinants, which boils down
to the three-term Plücker identities:

det (A [a− 1 : b | c : d + 1]) · det (A [a : b + 1 | c − 1 : d ])

+ det (A [a : b | c − 1 : d + 1]) · det (A [a− 1 : b + 1 | c : d ])

= det (A [a− 1 : b | c − 1 : d ]) · det (A [a : b + 1 | c : d + 1]) .

for A ∈ Ku×v and a ≤ b and c ≤ d and b− a+ d − c = u− 2.



Birational rowmotion: the rectangle case, proof

The proof of ord(R) = p + q now rests on four claims:

Claim 1: Graspj A = Graspp+q+j A for all j and A.

Claim 2: R
(
Graspj A

)
= Graspj−1 A for all j and A.

Claim 3: For almost every f ∈ KP̂ satisfying f (0) = f (1) = 1,
there exists a matrix A ∈ Kp×(p+q) such that Grasp0 A = f .
Claim 4: In proving ord(R) = p + q we can WLOG assume
that f (0) = f (1) = 1.

Claim 3 is an annoying (nonlinear) triangularity argument:
With the ansatz A = (Ip | B) for B ∈ Kp×q, the equation
Grasp0 A = f translates into a system of equations in the
entries of B which can be solved by elimination.



Birational rowmotion: the rectangle case, proof

The proof of ord(R) = p + q now rests on four claims:

Claim 1: Graspj A = Graspp+q+j A for all j and A.

Claim 2: R
(
Graspj A

)
= Graspj−1 A for all j and A.

Claim 3: For almost every f ∈ KP̂ satisfying f (0) = f (1) = 1,
there exists a matrix A ∈ Kp×(p+q) such that Grasp0 A = f .
Claim 4: In proving ord(R) = p + q we can WLOG assume
that f (0) = f (1) = 1.

Claim 4 follows by noting that for an n-graded poset we have
ord(R) = lcm

(
n + 1, ord

(
R
))

.



Birational rowmotion: the rectangle case, proof

The proof of ord(R) = p + q now rests on four claims:

Claim 1: Graspj A = Graspp+q+j A for all j and A.

Claim 2: R
(
Graspj A

)
= Graspj−1 A for all j and A.

Claim 3: For almost every f ∈ KP̂ satisfying f (0) = f (1) = 1,
there exists a matrix A ∈ Kp×(p+q) such that Grasp0 A = f .
Claim 4: In proving ord(R) = p + q we can WLOG assume
that f (0) = f (1) = 1.

The reciprocity statement can be proven in a similar vein.



Connection with Y -systems

Although a number of people suspected a possible connection between
Y -systems and birational rowmotion, it was only recently (in March
2015) that an explicit connection was uncovered by Max Glick, Darij
Grinberg, and Gregg Musiker (and possibly others who were in the room
that afternoon). This gives another path to proving the periodicity of
birational rowmotion, and connects it with the theory of cluster algebras.

Informally, a Y -system is a dynamical system of rational functions
defined on a graph coming from root systems. The setup is as follows:

Let ∆,∆′ be Dynkin diagrams on vertex sets I , I ′ and let C ,C ′ be
the corresponding Cartan matrices. Set the graph Γ := I × I ′.

Define A = (ai,j) := 2Id#I − C and A′ = (a′i ′,j′) := 2Id#I ′ − C ′.

The matrices A and A′ controls how this dynamical system updates.

The only example we consider here is Type A, e.g.,

∆ = A4 ⇒ C =

[ 2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

]
=⇒ A =

[
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

]
.



Connection with Y -systems

Let h, h′ denote the Coxeter numbers of ∆,∆′ (i.e., order of
the product of all the simple reflections in any order).

The ∆×∆′ Y -system is then the
collection {Yi ,i ′,t : (i , i ′) ∈ I × I ′, t ∈ Z} satisfying the relations

Yi ,i ′,t+1Yi ,i ′,t−1 =

∏
j∈I (1 + Yj ,i ′,t)

ai,j∏
j ′∈I ′(1 + Y−1

i ,j ′,t)
ai′,j′

.

Periodicity Theorem (Keller): Yi ,i ′,t+2(h+h′) = Yi ,i ′,t .

In type An, h = n + 1, so the Ap−1 × Aq−1 Y -system has
order 2(p + q).

when f (i , i ′) are rational functions on the vertices of the Hasse

diagram of P, and R : KP̂ 99K KP̂ is birational rowmotion on P,
then we have

Yi ,i ′,i+i ′−2k =
Rk f (i , i ′ + 1)

Rk f (i + 1, i ′)

where the Yi ,i ′,t belong to the Ap−1 × Aq−1 Y -system.



Birational rowmotion: the ∆-triangle case

Theorem (periodicity): If P is the triangle
∆(p) = {(i , k) ∈ {1, 2, ..., p} × {1, 2, ..., p} | i + k > p + 1}
with p > 2, then

ord (R) = 2p.

Example: The triangle ∆(4):

#

# #

# # #

Theorem (reciprocity): Rp reflects any K-labelling across
the vertical axis.

This is precisely the same result as for classical rowmotion.

The proofs use a “folding”-style argument to reduce this to
the rectangle case.
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∆(p) = {(i , k) ∈ {1, 2, ..., p} × {1, 2, ..., p} | i + k > p + 1}
with p > 2, then

ord (R) = 2p.

Example: The triangle ∆(4):
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Theorem (reciprocity): Rp reflects any K-labelling across
the vertical axis.

This is precisely the same result as for classical rowmotion.

The proofs use a “folding”-style argument to reduce this to
the rectangle case.



Birational rowmotion: the B-triangle case

Theorem (periodicity): If P is the triangle
{(i , k) ∈ {1, 2, ..., p} × {1, 2, ..., p} | i ≤ k}, then

ord (R) = 2p.

Example: For p = 4, this P has the form:

#

#

# #

# #

# #

#

#

.

Again this is reduced to the rectangle case.



Birational rowmotion: the B-triangle case

Theorem (periodicity): If P is the triangle
{(i , k) ∈ {1, 2, ..., p} × {1, 2, ..., p} | i ≤ k}, then

ord (R) = 2p.

Example: For p = 4, this P has the form:

#

#

# #

# #

# #

#

#

.

Again this is reduced to the rectangle case.



Birational rowmotion: the right-angled triangle case

Conjecture (periodicity): If P is the triangle
{(i , k) ∈ {1, 2, ..., p} × {1, 2, ..., p} | i ≤ k ; i + k > p + 1},
then

ord (R) = p.

Example: For p = 4, this P has the form:

#

#

# #

.

We proved this for p odd.

Note that for p even, this is a type-B positive root poset.
Armstrong-Stump-Thomas did this for classical rowmotion.
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Conjecture (periodicity): If P is the triangle
{(i , k) ∈ {1, 2, ..., p} × {1, 2, ..., p} | i ≤ k ; i + k > p + 1},
then

ord (R) = p.

Example: For p = 4, this P has the form:
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We proved this for p odd.

Note that for p even, this is a type-B positive root poset.
Armstrong-Stump-Thomas did this for classical rowmotion.



Birational rowmotion: the trapezoid case (Nathan Williams)

Conjecture (periodicity): If P is the trapezoid
{(i , k) ∈ {1, 2, ..., p} × {1, 2, ..., p} | i ≤ k ; i + k > p + 1; k ≥ s}
for some 0 ≤ s ≤ p, then

ord (R) = p.

Example: For p = 6 and s = 5, this P has the form:

#

#

# #

# #

# #

.

This was observed by Nathan Williams and verified for p ≤ 7.

Motivation comes from Williams’s “Cataland” philosophy.



Birational rowmotion: the root system connection (Nathan W.)

For what P is ord(R) <∞ ? This seems too hard to answer
in general.

Not true: for all those P that have nice and small ord(r)’s.

However it seems that ord(R) <∞ holds if P is the positive
root poset of a coincidental-type root system (An, Bn,
H3), or a minuscule heap (see Rush-Shi, section 6).

But the positive root system of D4 has ord(R) =∞.
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Birational rowmotion: the root system connection (Nathan W.)

For what P is ord(R) <∞ ? This seems too hard to answer
in general.

Not true: for all those P that have nice and small ord(r)’s.

However it seems that ord(R) <∞ holds if P is the positive
root poset of a coincidental-type root system (An, Bn,
H3), or a minuscule heap (see Rush-Shi, section 6).

But the positive root system of D4 has ord(R) =∞.



Application: Promotion on SSYTs

The following is an application of our result on
rectangle-shaped posets.

It is well known (see Striker-Williams) that classical
rowmotion (= birational rowmotion over the boolean semiring
{0, 1}) is related to promotion on two-rowed semistandard
Young tableaux.

Similarly, birational rowmotion over the tropical semiring
TropZ relates to arbitrary semistandard Young tableaux.

As an application of the periodicity theorem, we obtain the
classical result that promotion done n times on a rectangular
semistandard Young tableau with “ceiling” n does nothing.



QUESTIONS: What is this related to?

This line of work appears (at least superficially) to be related to
several other areas of research:

Y -systems and Zomolodchikov Periodicity?

Cluster mutations?

bounded octohedron recurrence?

Kirillov-Berenstein RSK?

Other Coxeter or Catalan combinatorics?

Q: What orders of toggling lead to finite-order birational maps?
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Birational rowmotion: noncommutative generalization?

This is new and unproven, and inspired by Iyudu/Shkarin,
arXiv:1305.1965v3 (Kontsevich’s periodicity conjecture).

Work in a skew field. Write m for m−1.

Define the v -toggle by

(Tv f ) (w) =


f (w) , if w 6= v ; ∑

u∈P̂;
ulv

f (u)

 · f (v) · ∑
u∈P̂;
umv

f (u), if w = v



Birational rowmotion: noncommutative generalization?

This is new and unproven, and inspired by Iyudu/Shkarin,
arXiv:1305.1965v3 (Kontsevich’s periodicity conjecture).

Work in a skew field. Write m for m−1.

Iteratively apply R to a labelling of the 2× 2-rectangle.
R0f =

b

z

x y

w

a



Birational rowmotion: noncommutative generalization?

This is new and unproven, and inspired by Iyudu/Shkarin,
arXiv:1305.1965v3 (Kontsevich’s periodicity conjecture).

Work in a skew field. Write m for m−1.

Iteratively apply R to a labelling of the 2× 2-rectangle.
R1f =

b

(x + y)zb

wx(x + y)zb wy(x + y)zb

azb

a



Birational rowmotion: noncommutative generalization?

This is new and unproven, and inspired by Iyudu/Shkarin,
arXiv:1305.1965v3 (Kontsevich’s periodicity conjecture).

Work in a skew field. Write m for m−1.

Iteratively apply R to a labelling of the 2× 2-rectangle.
R2f =

b

w (x + y) b

a · x + y · x (x + y) b a · x + y · y (x + y) b

abz · x + y · b

a



Birational rowmotion: noncommutative generalization?

This is new and unproven, and inspired by Iyudu/Shkarin,
arXiv:1305.1965v3 (Kontsevich’s periodicity conjecture).

Work in a skew field. Write m for m−1.

Iteratively apply R to a labelling of the 2× 2-rectangle.
R3f =

b

awb

... abz · x + y · x + y · y · (x + y)wb

ab · x + y · wb

a



Birational rowmotion: noncommutative generalization?

This is new and unproven, and inspired by Iyudu/Shkarin,
arXiv:1305.1965v3 (Kontsevich’s periodicity conjecture).

Work in a skew field. Write m for m−1.

Iteratively apply R to a labelling of the 2× 2-rectangle.
R4f =

b

abzab

... ab · x + y · x + y · y (x + y) (x + y) ab

abwab

a



Birational rowmotion: noncommutative generalization?

This is new and unproven, and inspired by Iyudu/Shkarin,
arXiv:1305.1965v3 (Kontsevich’s periodicity conjecture).

Work in a skew field. Write m for m−1.

Iteratively apply R to a labelling of the 2× 2-rectangle.
R4f =

b

abzab

abxab abyab

abwab

a

(after nontrivial simplifications).



Birational rowmotion: noncommutative generalization?

This is new and unproven, and inspired by Iyudu/Shkarin,
arXiv:1305.1965v3 (Kontsevich’s periodicity conjecture).

Work in a skew field. Write m for m−1.

Iteratively apply R to a labelling of the 2× 2-rectangle.
R4f =

b

abzab

abxab abyab

abwab

a

That is, all of our labels got conjugated by ab. Is Rp+q always
conjugation by f (0)·(f (1))−1 on a p×q-rectangle? This is similar
to Kontsevich’s periodicity. (Noncommutative determinants?)



What about Homomesy?
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What about Homomesy?

DEF: Given an (invertible) action τ on a finite set of objects S ,
call a statistic ϕ : S → C homomesic [Gk., “same middle”] with
respect to (S , τ) iff the average of ϕ over each τ -orbit O is the

same for all O, i.e.,
1

#O
∑
s∈O

ϕ(s) does not depend on the choice

of O.

We call the triple (S , τ, ϕ) a homomesy.
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DEF: Given an (invertible) action τ on a finite set of objects S ,
call a statistic ϕ : S → C homomesic [Gk., “same middle”] with
respect to (S , τ) iff the average of ϕ over each τ -orbit O is the

same for all O, i.e.,
1

#O
∑
s∈O

ϕ(s) does not depend on the choice

of O.

We call the triple (S , τ, ϕ) a homomesy.

For example, the statistic #I (cardinality of the ideal) is
homomesic with respect to rowmotion, r, acting on J([4]× [2]).



Classical rowmotion: homomesies

Theorem (Propp, R.)

Let O be an arbitrary r-orbit in J([p]× [q]). Then

1

#O
∑
I∈O

#I =
pq

2
,

i.e., the cardinality statistic is homomesic with respect to the
action of rowmotion on order ideals.

It turns out that to show a similar statement for rowmotion acting
on the antichains of P, the right tool is an equivariant bijection
from Stanley’s “Promotion and Evacuation” paper, as rephrased
by Hugh Thomas.
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Theorem (Propp, R.)

Let O be an arbitrary r-orbit in J([p]× [q]). Then

1

#O
∑
I∈O

#I =
pq

2
,

i.e., the cardinality statistic is homomesic with respect to the
action of rowmotion on order ideals.

It turns out that to show a similar statement for rowmotion acting
on the antichains of P, the right tool is an equivariant bijection
from Stanley’s “Promotion and Evacuation” paper, as rephrased
by Hugh Thomas.



Ideals in [a]× [b]: file-cardinality is homomesic

0 0 0 0 1 0 1 1 1 1 2 1

1 1 0 0 1 1

1

Within each orbit, the average order ideal has
1/2 a violet element, 1 red element, and 1/2 a brown element.



J([a]× [b]): file-cardinality is homomesic under promotion

We have more refined homomesies for combinatorial rowmotion on
J([p]× [q].
For 1− b ≤ k ≤ a− 1, let fk(I ) be the number of elements of I in
the kth file of [a]× [b], so that #I =

∑
k fk(I ).

Theorem (Propp, R.): If O is any ∂-orbit in J([a]× [b]),

1

#O
∑
I∈O

fk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.



Homomesy for Birational rowmotion on J([2]× [2]):
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The final slide of this talk

We’re happy to talk about this further with anyone who’s
interested.

Slides for this talk are available online (or will be soon) at

http://www.math.uconn.edu/~troby/research.html

Thanks very much for coming to this talk!

http://www.math.uconn.edu/~troby/research.html
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