Video Lecture M6: Matrix Operations 2

Tom Roby
Outline & Objectives

- Memorize the definition of the transpose A^T of a matrix A and compute examples.
- Generalize some algebraic properties for numbers to matrix multiplication, and demonstrate that others fail.
- Apply properties of these operations in examples and as part of reasoning in proofs.
Algebraic properties of matrix multiplication

Recall: \[AB = [A\vec{b}_1\ A\vec{b}_2\ \cdots\ A\vec{b}_p] \text{ where } (m \times n)(n \times p) \mapsto (m \times p) \]

Proposition

Let \(A, B, C \) be matrices of appropriate sizes, \(r \in \mathbb{R} \):

1. \(A(BC) = (AB)C \)
2. \(A(B + C) = AB + BC \)
3. \((A + B)C = AC + BC \)
4. \(r(AB) = (rA)B = A(rB) \)
5. \(I_mA = A = AI_n \)
6. \(BUT \ AB \neq BA \text{ OFTEN} \)

Think about dimensions for \(AB \) versus \(BA \).

Can we make sense of \(A^4 \)?
If \(AB = 0 \), then must \(A = 0 \) or \(B = 0 \)?
If \(AC = BC \) and \(C \neq 0 \) then must \(A = B \)?

Ex: Find examples of \(A, B, C \in \mathbb{R}^{2 \times 2} \) where (1) \(AB \neq BA \), (2) \(AB = 0 \), but neither \(A \) nor \(B \) is zero, and (3) \(AC = BC \), but \(A \neq B \).
Matrix Transposes

Definition

For $m \times n$ matrix A, define A^T to be the $n \times m$ matrix whose rows are the columns of A, i.e., $A = (a_{ij}) \iff A^T = (a_{ji})$.

$$
\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{bmatrix}^T =
\begin{bmatrix}
1 & 5 & 9 \\
2 & 6 & 10 \\
3 & 7 & 11 \\
4 & 8 & 12
\end{bmatrix},
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & j
\end{bmatrix}^T =
\begin{bmatrix}
a & d & g \\
b & e & h \\
c & f & j
\end{bmatrix}.
$$

Proposition

1. $(A^T)^T = A$
2. $(A + B)^T = A^T + B^T$
3. $(rA)^T = rA^T$
4. $(AB)^T = B^T A^T \neq A^T B^T$

Ex: Find an example of two 2×2 matrices A and B such that $(AB)^T \neq A^T B^T$.