Video Lecture F6: Factoring Linear Transformations

Tom Roby

MATH 2210Q (Appl. Lin. Alg.) VL F-6: Factoring Lin Trans (Tom Roby) 1 / 4

Outline & Objectives

- Define the matrix [T] of any linear transformation
 T : V → W relative to ordered bases B (for V) and C (for W).
- Analyze diagonalization of a matrix A as the result of computing an ideal basis for the linear transformation *x* → A*x* and changing coordinates relative to that basis.

The matrix of a linear transformation

Definition (Matrix of $T: V \rightarrow W$ relative to \mathcal{B} and \mathcal{C})

Let $T: V \to W$ be a lin transf, and let $\mathcal{B} = \{\vec{b}_1, \ldots, \vec{b}_n\}$ and $\mathcal{C} = \{\vec{c}_1, \ldots, \vec{c}_m\}$ be ordered bases for V and W, (resp). Then each $T(\vec{b}_i) = a_{1i}\vec{c}_1 + \cdots + a_{mi}\vec{c}_m$ (uniquely). Define the matrix of T relative to \mathcal{B} and \mathcal{C} by $[T] = [a_{ij}]$ (a $|\mathcal{C}| \times |\mathcal{B}|$ matrix).

Let
$$D : \mathbb{P}_3 \to \mathbb{P}_2$$
 by $D(f) = f'$. Let
 $\mathcal{B} = \{1, 1+t, 1+t+t^2, 1+t+t^2+t^3\},\$
 $\mathcal{C} = \{1, 1+t, 1+t+t^2\}.$ Then $[D] = \begin{bmatrix} 0 & 1 & -1 & -1 \\ & & & \end{bmatrix}$

The matrix of a linear operator

Definition (Matrix of $T: V \rightarrow V$ relative to \mathcal{B})

Let $T: V \to V$ be a lin transf, and let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_n\}$ be an ordered basis for V. Call the above matrix [T] the matrix of T relative to \mathcal{B} or the \mathcal{B} -matrix of T, written $[T]_{\mathcal{B}}$.

Let
$$T : \mathbb{P}_3 \to \mathbb{P}_3$$
 by $D(f) = tf'$. Let $\mathcal{E} = \{1, t, t^2, t^3\}$. Find $[T]_{\mathcal{E}}$.

Theorem (Similar matrices can represent same LT in \mathbb{R}^n)

Suppose $A = PCP^{-1}$, where $P = [\vec{b}_1 \ \vec{b}_2 \ \dots \ \vec{b}_n]$. Let $T : \vec{x} \to A\vec{x}$ and $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$. Then $C = [T]_{\mathcal{B}}$ is the \mathcal{B} -matrix of T.

Proof: $P = P_{\mathcal{B}}$, the change-of-coordinates matrix from \mathcal{B} to \mathcal{E} . So $[T]_{\mathcal{B}} = \left[[T(\vec{b}_1)]_{\mathcal{B}} \cdots [T(\vec{b}_n)]_{\mathcal{B}} \right] = \left[[A\vec{b}_1]_{\mathcal{B}} \cdots [A\vec{b}_n]_{\mathcal{B}} \right]$ $= [P^{-1}A\vec{b}_1 \cdots P^{-1}A\vec{b}_n] = P^{-1}A[\vec{b}_1 \cdots \vec{b}_n] = P^{-1}AP. \blacksquare$ $A = \begin{bmatrix} 13 & -15\\ 10 & -12 \end{bmatrix} = \begin{bmatrix} 3 & 1\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0\\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1\\ -2 & 3 \end{bmatrix}$ MATH 2210Q (Appl. Lin. Alg.) VL F-6: Factoring Lin Trans (Tom Roby) 4

4 / 4