Video Lecture F12: Singular Value Decomposition 1

Tom Roby

Outline & Objectives

- MAIN GOAL: Demonstrate the existence of a *singular* value decomposition (SVD) for any $A \in \mathbb{R}^{m \times n}$, and analyze how it relates to earlier work.
- We can only diagonalize some $A \in \mathbb{R}^{n \times n}$ to get $A = PDP^{-1}$, and only orthogonally diagonalize symmetric $A \in \mathbb{R}^{n \times n}$. By contrast, the SVD factors any rectangular $m \times n$ matrix as $A = U\Sigma V$, with U, V orthogonal (when A is real), and Σ (block) diagonal.
- The positive (diagonal) entries of Σ in the SVD, $\sigma_1, \ldots, \sigma_r$ are the *singular values*; they are the square roots of the eigenvalues of A^TA , not of A itself.

Max stretch and singular values

$$A \in \mathbb{R}^{n \times n}$$
 & $A\vec{x} = \lambda \vec{x} \Rightarrow ||A\vec{x}|| = ||\lambda \vec{x}|| = |\lambda| \cdot ||\vec{x}|| = |\lambda|$ if $||\vec{x}|| = 1$.

How to maximize stretch for rectangular A? $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$.

$$||A\vec{x}||^2 = (A\vec{x})^T (A\vec{x}) = \vec{x}^T A^T A \vec{x}$$
. Maximize subject to $||\vec{x}|| = 1$!

$$A^TA = \begin{bmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{bmatrix}$$
 has $\lambda_1 = 25, \lambda_2 = 9, \lambda_3 = 0$, corr to

$$\vec{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1/\sqrt{18} \\ -1/\sqrt{18} \\ 4/\sqrt{18} \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2/3 \\ -2/3 \\ -1/3 \end{bmatrix}$.

$$A\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
, & $A\vec{v}_2 = \frac{1}{\sqrt{18}} \begin{bmatrix} 9 \\ -9 \end{bmatrix} = 3 \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$.

Definition

The singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ of $A \in \mathbb{R}^{m \times n}$ are given by $\sigma_i := \sqrt{\lambda_i}$, where $\lambda_i \in \operatorname{Spec} A^T A$.

Singular Value Decomposition

Theorem (Orthogonal basis for Col A)

For $A \in \mathbb{R}^{m \times n}$, say $A^T A$ has ON basis of eigenvectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$, with corr $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and suppose A has exactly r nonzero (positive) singular values. Then $\{A\vec{v}_1, \ldots, A\vec{v}_r\}$ is an orthogonal basis for $\operatorname{Col} A$ and $\operatorname{rank} A = r$.

Proof: For
$$i \neq j$$
, $(A\vec{v_i})^T(A\vec{v_j}) = v_i^T A^T A \vec{v_j} = \vec{v_i}^T \lambda_j \vec{v_j} = \lambda_j \cdot 0 = 0$.

Now, $A\vec{v_j} = \vec{0} \iff 0 = ||A\vec{v_j}|| = \sigma_j$. Thus, $\{A\vec{v_1}, \dots, A\vec{v_r}\}$ is lin indep. It clearly spans $\operatorname{Col} A$, so it's a basis.

Theorem (Singular Value Decomposition)

For any $A \in \mathbb{R}^{m \times n}$, we can find $U \in \mathbb{R}^{m \times m}$ orthogonal, $V \in \mathbb{R}^{n \times n}$ orthogonal and $\Sigma \in \mathbb{R}^{m \times n}$ such that $A = U \Sigma V^T$, where $\Sigma = \begin{bmatrix} D & 0_{r \times n - r} \\ 0_{m - r \times r} & 0_{m - r \times n - r} \end{bmatrix}$ and the positive singular values $\sigma_1 \ge \cdots \ge \sigma_r > 0$ are diag entries of D.

Equivalently,
$$AV = U\Sigma \implies A\vec{v_i} = \sigma_i \vec{u_i}$$
 for $i \in [r]$.

MATH 2210Q (Appl. Lin. Alg.)

VL F-12: SVD 1 (Tom Roby)

Computing the SVD

Want:
$$A = U\Sigma V^T$$
, where $\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$. E.g., $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$.

(1) Compute (orthog) diagonalization of A^TA , giving v_i and λ_i :

$$A^TA = egin{bmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{bmatrix}$$
 has $\lambda_1 = 25, \lambda_2 = 9, \lambda_3 = 0$, corr to

$$\vec{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1/\sqrt{18} \\ -1/\sqrt{18} \\ 4/\sqrt{18} \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2/3 \\ -2/3 \\ -1/3 \end{bmatrix}$.

(2) Construct V and
$$\Sigma$$
: $V = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{18} & 2/3 \\ 1/\sqrt{2} & 1/\sqrt{18} & -2/3 \\ 0 & 4/\sqrt{18} & -1/3 \end{bmatrix}$ & $\Sigma = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$.

(3) Construct U, starting with normalizations of $A\vec{v_1} \cdots A\vec{v_r}$:

$$A\vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 5\\5 \end{bmatrix} = 5 \begin{bmatrix} 1/\sqrt{2}\\1/\sqrt{2} \end{bmatrix}$$
, & $A\vec{v}_2 = \frac{1}{\sqrt{18}} \begin{bmatrix} 9\\-9 \end{bmatrix} = 3 \begin{bmatrix} 1/\sqrt{2}\\-1/\sqrt{2} \end{bmatrix}$.

$$\implies U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$