Video Lecture E12: Linear Independence in Theory

Tom Roby

MATH 2210Q (Appl. Lin. Alg.) VL E-12: Lin. Independence in Thy (Tom Roby) 1 / 5

Outline & Objectives

- Understand *linear dependence* informally as characterizing whether certain vectors are "redundant" in terms of creating linear combinations.
- Analyze the reasoning behind the definition of linear (in)dependence and one vector being a linear combination of others in the set.

Linear dependence & redundancy

Definition

A set of vectors $S = {\vec{v}_1, ..., \vec{v}_p}$ is called linearly independent if the vector equation $x_1\vec{v}_1 + \cdots + x_p\vec{v}_p = \vec{0}$ has only the trivial soln. (all $x_i = 0$). The set is linearly dependent if there exists a nontrivial solution, c_i not all zero, such that $c_1\vec{v}_1 + \cdots + c_p\vec{v}_p = \vec{0}$. [\rightsquigarrow linear dependence relation]

Theorem

An indexed set $S = \{\vec{v}_1, \ldots, \vec{v}_p\}$ of $p \ge 2$ vectors is linearly dependent \iff at least one vector is a linear combination of the others. In fact, if $\vec{v}_1 \ne 0$, then there is $j \ge 2$ such that $v_j = d_1 \vec{v}_1 + \cdots + d_{j-1} \vec{v}_{j-1}$, some $d_i \in \mathbb{R}$.

Proof: (\Rightarrow) Suppose $\vec{v}_1 \neq 0$, and let $c_1 \vec{v}_1 + \cdots + c_p \vec{v}_p = \vec{0}$ be the linear dependence relation. Let j be the *largest* index such that $c_j \neq 0$ in the LDR. Then moving all previous terms to other side, we get $c_j \vec{v}_j = -c_1 \vec{v}_1 - \cdots - c_{j-1} \vec{v}_{j-1}$. Now divide through by c_j , which is not the total superdence in Thy (Tom Roby) 3/5

Rewriting Example

The columns $\vec{a_1}, \vec{a_2}, \vec{a_3}$ of the following matrix are lin. dependent:

$$A = \begin{bmatrix} 1 & 5 & 3 \\ 3 & 7 & 1 \\ 2 & 5 & 1 \end{bmatrix} \rightsquigarrow 2 \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} - 1 \begin{bmatrix} 5 \\ 7 \\ 5 \end{bmatrix} + 1 \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} = 0.$$

So we can rewrite $\vec{a}_3 = -2\vec{a}_1 + \vec{a}_2$.

This also lets us simplify linear combinations. Suppose we know that $(11, 25, 17) = 2\vec{a_1} + 3\vec{a_2} - 2\vec{a_3}$. Then we can replace $\vec{a_3}$ with $-2\vec{a_1} + \vec{a_2}$ to get: $(11, 25, 17) = 2\vec{a_1} + 3\vec{a_2} - 2(-2\vec{a_1} + \vec{a_2}) = 6\vec{a_1} + \vec{a_2}$. (Check!)

So
$$\begin{bmatrix} 1 & 5 & 3 & b_1 \\ 3 & 7 & 1 & b_2 \\ 2 & 5 & 1 & b_3 \end{bmatrix}$$
 has a soln. $\iff \begin{bmatrix} 1 & 5 & b_1 \\ 3 & 7 & b_2 \\ 2 & 5 & b_3 \end{bmatrix}$ does,

i.e., $\text{Span}\{\vec{a}_1, \vec{a}_2, \vec{a}_3\} = \text{Span}\{\vec{a}_1, \vec{a}_2\}.$

MATH 2210Q (Appl. Lin. Alg.) VL E-12: Lin. Independence in Thy (Tom Roby) 4 / 5

True or False?

- **T**/F: If \vec{u}_2 is a scalar multiple of \vec{u}_1 , then $S = {\vec{u}_1, \vec{u}_2}$ is linearly dependent.
- **2** T/F: If $S = {\vec{u_1}, \vec{u_2}}$ is linearly dependent, then $\vec{u_2}$ is a multiple of $\vec{u_1}$.
- **3** T/F: If the equation $A\vec{x} = \vec{b}$ has a solution (other than $\vec{x} = \vec{0}$), then the columns of A are linearly dependent.
- **3** T/F: If $\{w_1, w_2, w_3\}$ is linearly dependent, then so is $\{w_1, w_2, w_3, w_4\}$.