Video Lecture E12: Linear Independence in Theory

Tom Roby

Outline \& Objectives

- Understand linear dependence informally as characterizing whether certain vectors are "redundant" in terms of creating linear combinations.
- Analyze the reasoning behind the definition of linear (in)dependence and one vector being a linear combination of others in the set.

Linear dependence \& redundancy

Definition

A set of vectors $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is called linearly independent if the vector equation $x_{1} \vec{v}_{1}+\cdots+x_{p} \vec{v}_{p}=\overrightarrow{0}$ has only the trivial soln. (all $x_{i}=0$). The set is linearly dependent if there exists a nontrivial solution, c_{i} not all zero, such that $c_{1} \vec{v}_{1}+\cdots+c_{p} \vec{v}_{p}=\overrightarrow{0}$. [\rightsquigarrow linear dependence relation]

Theorem

An indexed set $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ of $p \geq 2$ vectors is linearly dependent \Longleftrightarrow at least one vector is a linear combination of the others. In fact, if $\overrightarrow{v_{1}} \neq 0$, then there is $j \geq 2$ such that $v_{j}=d_{1} \vec{v}_{1}+\cdots+d_{j-1} \vec{v}_{j-1}$, some $d_{i} \in \mathbb{R}$.

Proof: (\Rightarrow) Suppose $\vec{v}_{1} \neq 0$, and let $c_{1} \vec{v}_{1}+\cdots+c_{p} \vec{v}_{p}=\overrightarrow{0}$ be the linear dependence relation. Let j be the largest index such that $c_{j} \neq 0$ in the LDR. Then moving all previous terms to other side, we get $c_{j} \vec{v}_{j}=-c_{1} \vec{v}_{1}-\cdots-c_{j-1} \vec{v}_{j-1}$. Now divide through by c_{j},

Rewriting Example

The columns $\vec{a}_{1}, \vec{a}_{2}, \overrightarrow{a_{3}}$ of the following matrix are lin. dependent:
$A=\left[\begin{array}{lll}1 & 5 & 3 \\ 3 & 7 & 1 \\ 2 & 5 & 1\end{array}\right] \rightsquigarrow 2\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]-1\left[\begin{array}{l}5 \\ 7 \\ 5\end{array}\right]+1\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]=0$.
So we can rewrite $\overrightarrow{a_{3}}=-2 \overrightarrow{a_{1}}+\overrightarrow{a_{2}}$.
This also lets us simplify linear combinations. Suppose we know that $(11,25,17)=2 \vec{a}_{1}+3 \vec{a}_{2}-2 \vec{a}_{3}$. Then we can replace \vec{a}_{3} with $-2 \overrightarrow{a_{1}}+\overrightarrow{a_{2}}$ to get:
$(11,25,17)=2 \vec{a}_{1}+3 \overrightarrow{a_{2}}-2\left(-2 \overrightarrow{a_{1}}+\overrightarrow{a_{2}}\right)=6 \overrightarrow{a_{1}}+\overrightarrow{a_{2}}$. (Check!)
So $\left[\begin{array}{lll|l}1 & 5 & 3 & b_{1} \\ 3 & 7 & 1 & b_{2} \\ 2 & 5 & 1 & b_{3}\end{array}\right]$ has a soln. $\Longleftrightarrow\left[\begin{array}{ll|l}1 & 5 & b_{1} \\ 3 & 7 & b_{2} \\ 2 & 5 & b_{3}\end{array}\right]$ does,
i.e., $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}, \overrightarrow{a_{3}}\right\}=\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$.
(1) T/F: If \vec{u}_{2} is a scalar multiple of \vec{u}_{1}, then $S=\left\{\vec{u}_{1}, \overrightarrow{u_{2}}\right\}$ is linearly dependent.
(2) T / F : If $S=\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ is linearly dependent, then \vec{u}_{2} is a multiple of \vec{u}_{1}.
(3) T / F : If the equation $A \vec{x}=\vec{b}$ has a solution (other than $\vec{x}=\overrightarrow{0}$), then the columns of A are linearly dependent.
(9) T / F : If $\left\{w_{1}, w_{2}, w_{3}\right\}$ is linearly dependent, then so is $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$.

